Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fixed Tensor and Dynamic input #24

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
67 changes: 53 additions & 14 deletions python/tvm/relay/frontend/paddlepaddle.py
Original file line number Diff line number Diff line change
Expand Up @@ -55,6 +55,16 @@ def _get_pad_size(in_size, dilated_kernel_size, stride_size):
return [pad_before, pad_after]


def shape_of(x, dtype="int32"):
"""Get shape of a tensor"""

ttype = infer_type(x).checked_type
if not _ty.is_dynamic(ttype):
shape = list(ttype.shape)
return _expr.const(shape, dtype)
return _op.shape_of(x, dtype)


def _infer_value(x, params):
"""Try running infer_value, and if successful, return the inferred value.
Otherwise, return input"""
Expand Down Expand Up @@ -404,8 +414,19 @@ def convert_crop(g, op, block):
"""Operator converter for crop."""

x = g.get_node(op.input("X")[0])
offsets = op.attr("offsets")
shape = op.attr("shape")
input_shape = op.input("Shape")
input_offsets = op.input("Offsets")
if input_shape:
shape = g.get_node(input_shape[0])
shape = _infer_value(shape, g.get_params())
else:
shape = op.attr("shape")

if input_offsets:
offsets = g.get_node(input_offsets[0])
offsets = _infer_value(offsets, g.get_params())
else:
offsets = op.attr("offsets")

crop_len = len(shape)
slice_start = [0] * crop_len
Expand Down Expand Up @@ -496,9 +517,13 @@ def convert_expand(g, op, block):
input_shape = list(infer_shape(x))

ndims = len(input_shape)
sizes = op.attr("shape")
out = x
if op.input("Shape"):
sizes = g.get_node(op.input("Shape")[0])
sizes = _infer_value(sizes, g.get_params())
else:
sizes = op.attr("shape")

out = x
out_dims = len(sizes)
if ndims < out_dims:
num_newaxis = out_dims - ndims
Expand Down Expand Up @@ -567,16 +592,28 @@ def convert_fill_constant_batch_size_like(g, op, block):
"""Operator converter for fill_constant_batch_size_like."""

x = g.get_node(op.input("Input")[0])
input_shape = infer_shape(x)
out_shape = op.attr("shape")
value = op.attr("value")
shape = op.attr("shape")
input_dim_idx = op.attr("input_dim_idx")
output_dim_idx = op.attr("output_dim_idx")
value = op.attr("value")

dtype = block.var(op.output("Out")[0]).dtype
dtype = str(dtype).strip().split(".")[1]
out_shape[output_dim_idx] = input_shape[input_dim_idx]
value = np.full(out_shape, value, dtype)
out = _expr.const(value.astype(dtype)).astype(dtype)
input_shape = shape_of(x)
batch = _op.strided_slice(input_shape, begin=[input_dim_idx], end=[input_dim_idx+1]).astype("int32")
shape_before = shape[:output_dim_idx]
shape_before = _expr.const(shape_before, dtype="int32")
shape_after = shape[output_dim_idx+1:]
shape_after = _expr.const(shape_after, dtype="int32")

out_shape = _op.concatenate([shape_before, batch, shape_after], axis=0)
constant = _expr.const(value, dtype=dtype).astype(dtype)
out = _op.full(constant, out_shape, dtype=dtype)

# reshape for dynamic
shape[output_dim_idx] = -1
out = _op.reshape(out, shape)

g.add_node(op.output("Out")[0], out)


Expand Down Expand Up @@ -757,9 +794,9 @@ def convert_matmul(g, op, block):

# This implemention almost keeps same with ONNX
# Need to check input shape as batch matmul must be supported.
a_shape = _op.shape_of(inputs[0])
a_shape = shape_of(inputs[0])
a_rank = infer_shape(a_shape)[0]
b_shape = _op.shape_of(inputs[1])
b_shape = shape_of(inputs[1])
b_rank = infer_shape(b_shape)[0]
# When performing a batch matmul, we need to properly handle N-dim shapes.
if a_rank > 2 or b_rank > 2:
Expand Down Expand Up @@ -1343,8 +1380,10 @@ def get_node(self, name):

def add_node(self, name, node):
"""add a node to graph"""

self.nodes[name] = fold_constant(node)
if self.shape_dict:
self.nodes[name] = fold_constant(node)
else:
self.nodes[name] = node

def get_params(self, name=None):
"""get params from graph"""
Expand Down
57 changes: 31 additions & 26 deletions tests/python/frontend/paddlepaddle/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -376,33 +376,32 @@ def concat_unsqueeze2(inputs):

@tvm.testing.uses_gpu
def test_forward_crop():
input_shape = [10, 10]

class Crop(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.crop(inputs, shape=[2, 2])
@paddle.jit.to_static
def crop1(inputs):
return paddle.crop(inputs, shape=[2, 2])

class Crop1(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.crop(inputs, shape=[3, 3], offsets=[0, 1])
@paddle.jit.to_static
def crop2(inputs):
shape = paddle.to_tensor(np.array([3, 3]).astype("int32"))
return paddle.crop(inputs, shape=shape, offsets=[0, 1])

class Crop2(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.crop(inputs, shape=[3, 3], offsets=[1, 0])
@paddle.jit.to_static
def crop3(inputs):
offsets = paddle.to_tensor(np.array([1, 0]).astype("int32"))
return paddle.crop(inputs, shape=[3, 3], offsets=offsets)

class Crop3(nn.Layer):
@paddle.jit.to_static
def forward(self, inputs):
return paddle.crop(inputs, shape=[3, 3], offsets=[1, 1])
@paddle.jit.to_static
def crop4(inputs):
shape = paddle.to_tensor(np.array([3, 3]).astype("int32"))
offsets = paddle.to_tensor(np.array([1, 1]).astype("int32"))
return paddle.crop(inputs, shape=shape, offsets=offsets)

input_shape = [10, 10]
input_data = paddle.rand(input_shape, dtype="float32")
verify_model(Crop(), input_data=input_data)
verify_model(Crop1(), input_data=input_data)
verify_model(Crop2(), input_data=input_data)
verify_model(Crop3(), input_data=input_data)
verify_model(crop1, input_data=[input_data])
verify_model(crop2, input_data=[input_data])
verify_model(crop3, input_data=[input_data])
verify_model(crop4, input_data=[input_data])


@tvm.testing.uses_gpu
Expand Down Expand Up @@ -543,12 +542,18 @@ def dropout(inputs):
@tvm.testing.uses_gpu
def test_forward_expand():
@paddle.jit.to_static
def expand(inputs):
def expand1(inputs):
return paddle.expand(inputs, shape=[2, 3])

@paddle.jit.to_static
def expand2(inputs):
shape = paddle.to_tensor(np.array([2, 3]).astype("int32"))
return paddle.expand(inputs, shape=shape)

x_shape = [3]
x_data = paddle.rand(x_shape, dtype="float32")
verify_model(expand, input_data=[x_data])
verify_model(expand1, input_data=[x_data])
verify_model(expand2, input_data=[x_data])


@tvm.testing.uses_gpu
Expand Down Expand Up @@ -583,7 +588,7 @@ def shape1(inputs):
input_shape = [1, 3, 10, 10]
input_data = paddle.rand(input_shape, dtype="float32")
verify_model(shape1, input_data=[input_data])
# verify_model(full1, input_data=[input_data])
verify_model(full1, input_data=[input_data])
verify_model(full2, input_data=[input_data])


Expand Down Expand Up @@ -869,7 +874,7 @@ def pool2d3(inputs):
input_data = paddle.uniform(shape=[1, 2, 32, 32], dtype="float32", min=-1, max=1)
verify_model(pool2d1, input_data=input_data)
verify_model(pool2d2, input_data=input_data)
# verify_model(pool2d3, input_data=input_data)
verify_model(pool2d3, input_data=input_data)


@tvm.testing.uses_gpu
Expand Down