Skip to content

jiawei-ren/ModelNet-C

Repository files navigation

ModelNet-C (now part of PointCloud-C)

⚠️ This repo has been integrated into our new benchmark PointCloud-C! Please checkout PointCloud-C for any future updates!

Code for the paper "Benchmarking and Analyzing Point Cloud Classification under Corruptions". For the latest updates, see: sites.google.com/view/modelnetc/home

Benchmarking and Analyzing Point Cloud Classification under Corruptions
Jiawei Ren, Liang Pan, Ziwei Liu

arXiv 2022

corruptions

ModelNet-C [Download Link]

Get Started

Step 0. Clone the Repo

git clone https://github.com/jiawei-ren/ModelNet-C.git
cd ModelNet-C

Step 1. Set Up the Environment

Set up the environment by:

conda create --name modelnetc python=3.7.5
conda activate modelnetc
pip install -r requirements.txt
cd SimpleView/pointnet2_pyt && pip install -e . && cd -
pip install -e modelnetc_utils

Step 2. Prepare Data

Download ModelNet-C by:

cd data
gdown https://drive.google.com/uc?id=1KE6MmXMtfu_mgxg4qLPdEwVD5As8B0rm
unzip modelnet_c.zip && cd ..

Alternatively, you may download ModelNet40-C manually and extract it under data.

Step 3. Download Pretrained Models

Download pretrained models by

gdown https://drive.google.com/uc?id=11RONLZGg0ezxC16n57PiEZouqC5L0b_h
unzip pretrained_models.zip

Alternatively, you may download pretrained models manually and extract it under root directory.

Benchmark on ModelNet-C

Evaluation Commands

Evaluation commands are provided in EVALUATE.md.

Customize ModelNet-C Evaluation for Your Codebase

We have provided evaluation utilities to help you evaluate on ModelNet-C using your own codebase. Please follow CUSTOMIZE.md.

Benchmark Results

Method Reference Standalone mCE Clean OA
DGCNN Wang et al. Yes 1.000 0.926
PointNet Qi et al. Yes 1.422 0.907
PointNet++ Qi et al. Yes 1.072 0.930
RSCNN Liu et al. Yes 1.130 0.923
SimpleView Goyal et al. Yes 1.047 0.939
GDANet Xu et al. Yes 0.892 0.934
CurveNet Xiang et al. Yes 0.927 0.938
PAConv Xu et al. Yes 1.104 0.936
PCT Guo et al. Yes 0.925 0.930
RPC Ren et al. Yes 0.863 0.930
DGCNN+PointWOLF Kim et al. No 0.814 0.926
DGCNN+RSMix Lee et al. No 0.745 0.930
DGCNN+WOLFMix Ren et al. No 0.590 0.932
GDANet+WOLFMix Ren et al. No 0.571 0.934

*Standalone indicates if the method is a standalone architecture or a combination with augmentation or pretrain.

Todos

  • PointMixup
  • OcCo
  • PointBERT

Cite ModelNet-C

@article{
    ren2022modelnetc,
    title={Benchmarking and Analyzing Point Cloud Classification under Corruptions},
    author={Jiawei Ren and Liang Pan and Ziwei Liu},
    journal={arXiv:2202.03377},
    year={2022},
}

Acknowledgement

This codebase heavily borrows codes from the following repositories:

About

[ICML 2022] Benchmarking and Analyzing Point Cloud Classification under Corruptions https://arxiv.org/abs/2202.03377

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published