Skip to content

jnkl314/vbge

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

24 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Video Background Eraser

Result Preview

This C++ pipeline combines two DCNNs and some computer vision preprocessing in order to remove the background of images from a video.
The output is a directory of RGBA images. The alpha component of background pixels are set to 0.
The contour of the foreground objects have progressive alpha values to blend them with new backgrounds.


Requirements

Tested on Ubuntu 18.04.

Direct dependencies:

Components

The pipeline is composed by :

Build

cd ./samples/
mkdir build
cd build
cmake ../VideoBackgroundEraser/
make -j8

Launch Example

#!/bin/bash
BIN=build/VideoBackgroundEraser

INPUT=../data/YourVideo.mp4
OUTPUT=../data/results/
OUTPUT2=../data/results_grid/
MODEL1=../data/best_deeplabv3_skydiver.pt
MODEL2=../data/best_DeepImageMatting.pt
BG="-b 0"
CUSTOM="--useCuda --hideDisplay -t"

OPTIONS="-m ${MODEL1} -n ${MODEL2} -i ${INPUT} -o ${OUTPUT} -p ${OUTPUT2} ${BG} ${CUSTOM}"

echo $BIN $OPTIONS
$BIN $OPTIONS

Usage

USAGE: 

 VideoBackgroundEraser  [-r <float>]
                        [-t]
                        [-b <list<int>>] ... 
                        -n <string> -m <string>
                        [-p <string>]
                        [-o <string>]
                        [--hideDisplay]
                        [-c]
                        -i <string>
                        [--] [--version] [-h]
  Where: 

   -r <float>,  --imageMatting_scale <float>
     Rescale for Deep Image Matting

   -t,  --enable_temporalManagement
     Enable temporal management of scene to improve accuracy between
     frames. Might not work well for video where the background is moving

   -b <list<int>>,  --background_classId_list <list<int>>  (accepted
      multiple times)
     IDs of the background in the model

   -n <string>,  --DeepImageMattingModelPath <string>
     (required)  Path to a PyTorch JIT binary .pb containing the trained
     model DeepImageMatting

   -m <string>,  --DeepLabV3ModelPath <string>
     (required)  Path to a PyTorch JIT binary .pb containing the trained
     model DeepLabV3

   -p <string>,  --outputPathGrid <string>
     Path to a directory to save rgb result with grid

   -o <string>,  --outputPath <string>
     Path to a directory to save rgba result

   --hideDisplay
     Hide display of source image and result

   -c,  --useCuda
     Use Cuda for inference

   -i <string>,  --inputPath <string>
     (required)  Path to video or a directory+pattern

FFMPEG Utility

Once the background is replaced with the tool/code of your choice, ffmpeg can be used to compress the images in a video file :

ffmpeg -i your_result/%08d.png -c:v libx264 -crf 20 -pix_fmt yuv420p your_result.mp4