-
Notifications
You must be signed in to change notification settings - Fork 32
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #99 from joezuntz/kids-only-like
Add kids-only cosebis likelihood
- Loading branch information
Showing
3 changed files
with
218 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,38 @@ | ||
;In KiDS-1000 the photo-z uncertainty is assumed to be correlated across the z-bins (see prior file) | ||
[nofz_shifts_kids] | ||
uncorr_bias_1 = -5.0 0.000 5.0 | ||
uncorr_bias_2 = -5.0 -0.181 5.0 | ||
uncorr_bias_3 = -5.0 -1.110 5.0 | ||
uncorr_bias_4 = -5.0 -1.395 5.0 | ||
uncorr_bias_5 = -5.0 1.265 5.0 | ||
|
||
; The Hybrid pipeline set up uses independent IA parameters for each survey | ||
; Here we use Tophat priors for an NLA-z analysis, but if you wanted to analyse | ||
; TATT you can modify the priors on the A2, alpha2 and bias_ta parameters | ||
[intrinsic_alignment_parameters] | ||
z_piv = 0.62 | ||
A1 = -5.0 0.0 5.0 | ||
A2 = 0.0 | ||
alpha1 = -5.0 0.0 5.0 | ||
alpha2 = 0.0 | ||
bias_ta = 0.0 | ||
|
||
|
||
; We use a Tophat prior to marginalise over our uncertainty on baryon feedback using HMCode2020 | ||
[halo_model_parameters] | ||
logt_agn = 7.3 7.8 8.0 | ||
|
||
; This is the set of cosmological parameter priors that were found to | ||
; introduce the least projection effects on the marginal S8 distribution | ||
; Note that CosmoSIS v3 onwards can sample over S8 | ||
[cosmological_parameters] | ||
omch2 = 0.051 0.11812972217650827 0.255 | ||
ombh2 = 0.019 0.025939374402978773 0.026 | ||
h0 = 0.64 0.7666550530735352 0.82 | ||
n_s = 0.84 0.9007697522848085 1.1 | ||
S_8 = 0.1 0.7567464875805479 1.3 | ||
omega_k = 0.0 | ||
w = -1.0 | ||
wa = 0.0 | ||
mnu = 0.055 0.07740741 0.6 | ||
tau = 0.0697186 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
; We will carry out a joint Hybrid pipeline analysis of | ||
; DES Y3 xi_pm and KiDS-1000 COSEBIS including scale cuts (2'<theta_min<300') | ||
[DEFAULT] | ||
DATAFILE=likelihood/des-y3_and_kids-1000/DES-Y3_xipm_and_KiDS-1000_COSEBIs_2.0_300.0.fits | ||
RUN_NAME = des-y3_and_kids-1000 | ||
|
||
[pipeline] | ||
modules = consistency camb extrapolate | ||
correlated_dz_priors fits_nz_kids photoz_bias_kids | ||
fast_pt IA pk_to_cl_kids add_intrinsic cosebis cosebis_like | ||
likelihoods = cosebis | ||
values = examples/kids-1000-values.ini | ||
priors = examples/des-y3_and_kids-1000-priors.ini | ||
extra_output = cosmological_parameters/sigma_8 | ||
cosmological_parameters/A_s cosmological_parameters/omega_m | ||
cosmological_parameters/omega_lambda cosmological_parameters/cosmomc_theta | ||
delta_z_out_kids/bin_1 delta_z_out_kids/bin_2 delta_z_out_kids/bin_3 | ||
delta_z_out_kids/bin_4 delta_z_out_kids/bin_5 | ||
likelihoods/cosebis_like | ||
timing = F | ||
debug = T | ||
|
||
; Since CosmoSIS v3, the consistency interface allows for sampling over S8 | ||
; Here we set up the non-linear power spectrum | ||
[consistency] | ||
file = utility/consistency/consistency_interface.py | ||
cosmomc_theta=T | ||
|
||
[camb] | ||
file = boltzmann/camb/camb_interface.py | ||
mode = all | ||
halofit_version = mead2020_feedback | ||
neutrino_hierarchy = normal | ||
lmax=2500 | ||
kmax=100.0 | ||
zmid = 2.0 | ||
nz_mid = 100 | ||
zmax = 6.0 | ||
nz = 150 | ||
feedback=0 | ||
|
||
[extrapolate] | ||
file = boltzmann/extrapolate/extrapolate_power.py | ||
kmax = 500. | ||
|
||
; Next we define the redshift bins and how we're going to marginalise over | ||
; our uncertainty on these distributions | ||
[fits_nz_des] | ||
file = number_density/load_nz_fits/load_nz_fits.py | ||
nz_file = %(DATAFILE)s | ||
data_sets = source_des | ||
|
||
; This module allows for correlated priors for KiDS given a covariance matrix | ||
[correlated_dz_priors] | ||
file = number_density/correlated_priors/correlated_priors.py | ||
uncorrelated_parameters = nofz_shifts_kids/uncorr_bias_1 nofz_shifts_kids/uncorr_bias_2 | ||
nofz_shifts_kids/uncorr_bias_3 nofz_shifts_kids/uncorr_bias_4 | ||
nofz_shifts_kids/uncorr_bias_5 | ||
output_parameters = nofz_shifts_kids/bias_1 nofz_shifts_kids/bias_2 | ||
nofz_shifts_kids/bias_3 nofz_shifts_kids/bias_4 | ||
nofz_shifts_kids/bias_5 | ||
covariance = likelihood/des-y3_and_kids-1000/nofz_covariance/SOM_cov_multiplied.asc | ||
|
||
[fits_nz_kids] | ||
file = number_density/load_nz_fits/load_nz_fits.py | ||
nz_file = %(DATAFILE)s | ||
data_sets = source_kids | ||
|
||
|
||
[photoz_bias_kids] | ||
file = number_density/photoz_bias/photoz_bias.py | ||
mode = additive | ||
sample = nz_source_kids | ||
bias_section = nofz_shifts_kids | ||
interpolation = cubic | ||
output_deltaz_section_name = delta_z_out_kids | ||
|
||
; Here we are using the TATT modules for our IA model | ||
; to allow for flexibility in extensions to our fiducial analyses | ||
; The hybrid set-up uses NLA-z, with the non-NLA parameters | ||
; in the TATT model set to zero in the values file | ||
|
||
[fast_pt] | ||
file = structure/fast_pt/fast_pt_interface.py | ||
do_ia = T | ||
k_res_fac = 0.5 | ||
verbose = F | ||
|
||
|
||
[IA] | ||
file = intrinsic_alignments/tatt/tatt_interface.py | ||
sub_lowk=F | ||
do_galaxy_intrinsic=F | ||
ia_model=tatt | ||
|
||
; As DES and KiDS are assumed to be uncorrelated we can | ||
; calculate the likelihoods independently | ||
|
||
|
||
[add_intrinsic] | ||
file=shear/add_intrinsic/add_intrinsic.py | ||
shear-shear=T | ||
position-shear=F | ||
perbin=F | ||
|
||
|
||
[pk_to_cl_kids] | ||
file = structure/projection/project_2d.py | ||
ell_min_logspaced = 0.1 | ||
ell_max_logspaced = 5.0e5 | ||
n_ell_logspaced = 100 | ||
shear-shear = source_kids-source_kids | ||
shear-intrinsic = source_kids-source_kids | ||
intrinsic-intrinsic = source_kids-source_kids | ||
intrinsicb-intrinsicb = source_kids-source_kids | ||
verbose = F | ||
get_kernel_peaks = F | ||
sig_over_dchi = 20. | ||
shear_kernel_dchi = 10. | ||
|
||
;This calculates COSEBIs from Cls | ||
[cosebis] | ||
file=shear/cosebis/cl_to_cosebis/cl_to_cosebis_interface.so | ||
theta_min = 2.0 ; default=0.5 | ||
theta_max = 300.0 ; default=300 | ||
n_max = 5 ; default=5 | ||
input_section_name = shear_cl | ||
output_section_name = cosebis | ||
|
||
;This is a simplified version of the the KiDS-1000 2pt_likelihood module | ||
;which is not all-singing nor all-dancing because we only need to | ||
;analyse COSEBIs for this Joint DES+KiDS analysis | ||
[cosebis_like] | ||
file = likelihood/2pt/cosebis/simple_like.py | ||
data_set = En n | ||
data_file = %(DATAFILE)s | ||
like_name = cosebis | ||
;If you're interested in using KiDS-1000 data products other than COSEBIs | ||
;The 2pt-likelihood that KiDS-1000 used for their 3x2pt analysis can be found | ||
;on the KiDS-1000 KCAP repo: | ||
;https://github.com/KiDS-WL/kcap/blob/master/modules/scale_cuts/scale_cuts.py | ||
;https://github.com/KiDS-WL/kcap/blob/master/utils/mini_like.py | ||
|
||
|
||
; If I run on the command line "cosmosis examples/des-y3_and_kids-1000.ini", this will run this quick test sampler. | ||
[runtime] | ||
sampler = test | ||
verbosity = standard | ||
; saving the output to output/des-y3_and_kids-1000 | ||
[test] | ||
save_dir=output/%(RUN_NAME)s | ||
fatal_errors=T | ||
|
||
; If I run command "cosmosis examples/des-y3_and_kids-1000.ini runtime.sampler='polychord'", this will run polychord. | ||
; These are the settings used for the Hybrid DES+KiDS analysis, but be warned it's CPU intensive. | ||
[polychord] | ||
base_dir = chain_checkpoints | ||
polychord_outfile_root=poly_%(RUN_NAME)s | ||
resume=F | ||
feedback = 3 | ||
fast_fraction = 0.1 | ||
;Minimum settings for a "good enough" quick test | ||
;live_points = 250 | ||
;num_repeats = 30 | ||
;tolerance = 0.1 | ||
;Settings for high quality paper runs | ||
live_points = 500 | ||
num_repeats=60 | ||
tolerance=0.01 | ||
boost_posteriors=10.0 | ||
|
||
[output] | ||
filename= output/kids-1000.txt | ||
format=text | ||
privacy=F |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters