-
Notifications
You must be signed in to change notification settings - Fork 35
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat(scripts): canny thresholds grid plots
- Loading branch information
Showing
1 changed file
with
128 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,128 @@ | ||
import shutil | ||
from itertools import product | ||
from pathlib import Path | ||
|
||
import cv2 | ||
import matplotlib.pyplot as plt | ||
import numpy as np | ||
from mpl_toolkits.axes_grid1 import ImageGrid | ||
|
||
|
||
def make_grid(image: np.ndarray, thresholds: tuple, n_steps: int) -> plt.Figure: | ||
# Make a grid of the product of the two linspace based on the thresholds range. | ||
# The grid is a 2D array of shape (n_steps, n_steps, 2) | ||
thresholds_grid = np.array( | ||
np.meshgrid( | ||
np.linspace(thresholds[0], thresholds[1], n_steps, dtype=np.int32), | ||
np.linspace(thresholds[0], thresholds[1], n_steps, dtype=np.int32), | ||
) | ||
).T | ||
|
||
fig = plt.figure(figsize=(18.0, 20.0)) | ||
image_grid = ImageGrid( | ||
fig, 111, nrows_ncols=(n_steps + 1, n_steps), axes_pad=0.1, label_mode="all" | ||
) | ||
|
||
for x, y in product( | ||
range(thresholds_grid.shape[0]), range(thresholds_grid.shape[1]) | ||
): | ||
t1, t2 = thresholds_grid[x, y] | ||
canny = cv2.Canny(image, t1, t2) | ||
canny = cv2.cvtColor(canny, cv2.COLOR_BGR2RGB) | ||
|
||
coords = (y + 1) * n_steps + x | ||
|
||
image_grid[coords].imshow(canny) | ||
|
||
# Show xlabels. | ||
if x == 0: | ||
image_grid[coords].set_ylabel(f"{t2}") | ||
|
||
# Show ylabels. | ||
if y + 1 == n_steps: | ||
image_grid[coords].set_xlabel(f"{t1}") | ||
|
||
# Remove ticks. | ||
for grid_plot in image_grid: | ||
grid_plot.set_xticks([]) | ||
grid_plot.set_yticks([]) | ||
|
||
grid_plot.set_xticklabels([]) | ||
grid_plot.set_yticklabels([]) | ||
|
||
# The image is plotted in the upper-left corner. | ||
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB) | ||
image_grid[0].imshow(image) | ||
|
||
return fig | ||
|
||
|
||
if __name__ == "__main__": | ||
import argparse | ||
import random | ||
|
||
from tqdm import tqdm | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument( | ||
"--image-dir", | ||
help="Directory containing images to transform", | ||
required=True, | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"--output-dir", | ||
help="Directory to save transformed images", | ||
required=True, | ||
type=Path, | ||
) | ||
parser.add_argument( | ||
"--threshold1", | ||
help="First threshold for canny edge detection", | ||
type=int, | ||
default=000, | ||
) | ||
parser.add_argument( | ||
"--threshold2", | ||
help="Second threshold for canny edge detection", | ||
type=int, | ||
default=1000, | ||
) | ||
parser.add_argument( | ||
"--n_steps", | ||
help="Number of steps for the linspace", | ||
type=int, | ||
default=11, | ||
) | ||
parser.add_argument( | ||
"--samples", | ||
help="Number of samples to take from the image directory", | ||
type=int, | ||
default=10, | ||
) | ||
parser.add_argument( | ||
"--size", | ||
help="Size of the image", | ||
type=int, | ||
default=64, | ||
) | ||
args = parser.parse_args() | ||
|
||
assert ( | ||
args.threshold1 < args.threshold2 | ||
), "Threshold 1 must be smaller than threshold 2" | ||
|
||
random.seed(42) | ||
images = shutil.os.listdir(args.image_dir) | ||
images = images[: args.samples] | ||
|
||
args.output_dir.mkdir(exist_ok=True) | ||
|
||
for image_name in tqdm(images, desc="Grid canny"): | ||
image = cv2.imread(str(args.image_dir / image_name)) | ||
image = cv2.resize(image, (args.size, args.size), interpolation=cv2.INTER_CUBIC) | ||
|
||
fig = make_grid(image, (args.threshold1, args.threshold2), args.n_steps) | ||
|
||
canny_path = (args.output_dir / image_name).with_suffix(".png") | ||
fig.savefig(canny_path, bbox_inches="tight") |