forked from pola-rs/polars
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
perf(rust, python): optimize arr.min/arr.max (pola-rs#7050)
- Loading branch information
Showing
6 changed files
with
266 additions
and
11 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,17 @@ | ||
use crate::data_types::IsFloat; | ||
use crate::kernels::rolling::{compare_fn_nan_max, compare_fn_nan_min}; | ||
|
||
pub trait ExtremaNanAware<T> { | ||
fn min_value_nan_aware(&self) -> Option<&T>; | ||
fn max_value_nan_aware(&self) -> Option<&T>; | ||
} | ||
|
||
impl<T: PartialOrd + IsFloat> ExtremaNanAware<T> for [T] { | ||
fn min_value_nan_aware(&self) -> Option<&T> { | ||
self.iter().min_by(|a, b| compare_fn_nan_max(*a, *b)) | ||
} | ||
|
||
fn max_value_nan_aware(&self) -> Option<&T> { | ||
self.iter().max_by(|a, b| compare_fn_nan_min(*a, *b)) | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,223 @@ | ||
use arrow::array::{Array, PrimitiveArray}; | ||
use arrow::bitmap::Bitmap; | ||
use arrow::types::NativeType; | ||
use polars_arrow::array::PolarsArray; | ||
use polars_arrow::data_types::{ArrayRef, IsFloat}; | ||
use polars_arrow::slice::ExtremaNanAware; | ||
use polars_arrow::utils::CustomIterTools; | ||
use polars_core::prelude::*; | ||
use polars_core::with_match_physical_numeric_polars_type; | ||
|
||
use crate::chunked_array::list::namespace::has_inner_nulls; | ||
|
||
fn min_between_offsets<T>(values: &[T], offset: &[i64]) -> PrimitiveArray<T> | ||
where | ||
T: NativeType + PartialOrd + IsFloat, | ||
{ | ||
let mut running_offset = offset[0]; | ||
|
||
(offset[1..]) | ||
.iter() | ||
.map(|end| { | ||
let current_offset = running_offset; | ||
running_offset = *end; | ||
|
||
let slice = unsafe { values.get_unchecked(current_offset as usize..*end as usize) }; | ||
slice.min_value_nan_aware().copied() | ||
}) | ||
.collect_trusted() | ||
} | ||
|
||
fn dispatch_min<T>(arr: &dyn Array, offsets: &[i64], validity: Option<&Bitmap>) -> ArrayRef | ||
where | ||
T: NativeType + PartialOrd + IsFloat, | ||
{ | ||
let values = arr.as_any().downcast_ref::<PrimitiveArray<T>>().unwrap(); | ||
let values = values.values().as_slice(); | ||
let mut out = min_between_offsets(values, offsets); | ||
|
||
if let Some(validity) = validity { | ||
if out.has_validity() { | ||
out.apply_validity(|other_validity| validity & &other_validity) | ||
} else { | ||
out = out.with_validity(Some(validity.clone())); | ||
} | ||
} | ||
Box::new(out) | ||
} | ||
|
||
fn min_list_numerical(ca: &ListChunked, inner_type: &DataType) -> Series { | ||
use DataType::*; | ||
let chunks = ca | ||
.downcast_iter() | ||
.map(|arr| { | ||
let offsets = arr.offsets().as_slice(); | ||
let values = arr.values().as_ref(); | ||
|
||
match inner_type { | ||
Int8 => dispatch_min::<i8>(values, offsets, arr.validity()), | ||
Int16 => dispatch_min::<i16>(values, offsets, arr.validity()), | ||
Int32 => dispatch_min::<i32>(values, offsets, arr.validity()), | ||
Int64 => dispatch_min::<i64>(values, offsets, arr.validity()), | ||
UInt8 => dispatch_min::<u8>(values, offsets, arr.validity()), | ||
UInt16 => dispatch_min::<u16>(values, offsets, arr.validity()), | ||
UInt32 => dispatch_min::<u32>(values, offsets, arr.validity()), | ||
UInt64 => dispatch_min::<u64>(values, offsets, arr.validity()), | ||
Float32 => dispatch_min::<f32>(values, offsets, arr.validity()), | ||
Float64 => dispatch_min::<f64>(values, offsets, arr.validity()), | ||
_ => unimplemented!(), | ||
} | ||
}) | ||
.collect::<Vec<_>>(); | ||
|
||
Series::try_from((ca.name(), chunks)).unwrap() | ||
} | ||
|
||
pub(super) fn list_min_function(ca: &ListChunked) -> Series { | ||
fn inner(ca: &ListChunked) -> Series { | ||
match ca.inner_dtype() { | ||
DataType::Boolean => { | ||
let out: IdxCa = ca | ||
.amortized_iter() | ||
.map(|s| s.and_then(|s| s.as_ref().bool().unwrap().min())) | ||
.collect_trusted(); | ||
out.into_series() | ||
} | ||
dt if dt.is_numeric() => { | ||
with_match_physical_numeric_polars_type!(dt, |$T| { | ||
let out: ChunkedArray<$T> = ca | ||
.amortized_iter() | ||
.map(|opt_s| | ||
{ | ||
let s = opt_s?; | ||
let ca: &ChunkedArray<$T> = s.as_ref().as_ref().as_ref(); | ||
ca.min() | ||
} | ||
) | ||
.collect_trusted(); | ||
out.into_series() | ||
}) | ||
} | ||
_ => ca | ||
.apply_amortized(|s| s.as_ref().min_as_series()) | ||
.explode() | ||
.unwrap() | ||
.into_series(), | ||
} | ||
} | ||
|
||
if has_inner_nulls(ca) { | ||
return inner(ca); | ||
}; | ||
|
||
match ca.inner_dtype() { | ||
dt if dt.is_numeric() => min_list_numerical(ca, &dt), | ||
_ => inner(ca), | ||
} | ||
} | ||
|
||
fn max_between_offsets<T>(values: &[T], offset: &[i64]) -> PrimitiveArray<T> | ||
where | ||
T: NativeType + PartialOrd + IsFloat, | ||
{ | ||
let mut running_offset = offset[0]; | ||
|
||
(offset[1..]) | ||
.iter() | ||
.map(|end| { | ||
let current_offset = running_offset; | ||
running_offset = *end; | ||
|
||
let slice = unsafe { values.get_unchecked(current_offset as usize..*end as usize) }; | ||
slice.max_value_nan_aware().copied() | ||
}) | ||
.collect_trusted() | ||
} | ||
|
||
fn dispatch_max<T>(arr: &dyn Array, offsets: &[i64], validity: Option<&Bitmap>) -> ArrayRef | ||
where | ||
T: NativeType + PartialOrd + IsFloat, | ||
{ | ||
let values = arr.as_any().downcast_ref::<PrimitiveArray<T>>().unwrap(); | ||
let values = values.values().as_slice(); | ||
let mut out = max_between_offsets(values, offsets); | ||
|
||
if let Some(validity) = validity { | ||
if out.has_validity() { | ||
out.apply_validity(|other_validity| validity & &other_validity) | ||
} else { | ||
out = out.with_validity(Some(validity.clone())); | ||
} | ||
} | ||
Box::new(out) | ||
} | ||
|
||
fn max_list_numerical(ca: &ListChunked, inner_type: &DataType) -> Series { | ||
use DataType::*; | ||
let chunks = ca | ||
.downcast_iter() | ||
.map(|arr| { | ||
let offsets = arr.offsets().as_slice(); | ||
let values = arr.values().as_ref(); | ||
|
||
match inner_type { | ||
Int8 => dispatch_max::<i8>(values, offsets, arr.validity()), | ||
Int16 => dispatch_max::<i16>(values, offsets, arr.validity()), | ||
Int32 => dispatch_max::<i32>(values, offsets, arr.validity()), | ||
Int64 => dispatch_max::<i64>(values, offsets, arr.validity()), | ||
UInt8 => dispatch_max::<u8>(values, offsets, arr.validity()), | ||
UInt16 => dispatch_max::<u16>(values, offsets, arr.validity()), | ||
UInt32 => dispatch_max::<u32>(values, offsets, arr.validity()), | ||
UInt64 => dispatch_max::<u64>(values, offsets, arr.validity()), | ||
Float32 => dispatch_max::<f32>(values, offsets, arr.validity()), | ||
Float64 => dispatch_max::<f64>(values, offsets, arr.validity()), | ||
_ => unimplemented!(), | ||
} | ||
}) | ||
.collect::<Vec<_>>(); | ||
|
||
Series::try_from((ca.name(), chunks)).unwrap() | ||
} | ||
|
||
pub(super) fn list_max_function(ca: &ListChunked) -> Series { | ||
fn inner(ca: &ListChunked) -> Series { | ||
match ca.inner_dtype() { | ||
DataType::Boolean => { | ||
let out: IdxCa = ca | ||
.amortized_iter() | ||
.map(|s| s.and_then(|s| s.as_ref().bool().unwrap().max())) | ||
.collect_trusted(); | ||
out.into_series() | ||
} | ||
dt if dt.is_numeric() => { | ||
with_match_physical_numeric_polars_type!(dt, |$T| { | ||
let out: ChunkedArray<$T> = ca | ||
.amortized_iter() | ||
.map(|opt_s| | ||
{ | ||
let s = opt_s?; | ||
let ca: &ChunkedArray<$T> = s.as_ref().as_ref().as_ref(); | ||
ca.max() | ||
} | ||
) | ||
.collect_trusted(); | ||
out.into_series() | ||
}) | ||
} | ||
_ => ca | ||
.apply_amortized(|s| s.as_ref().max_as_series()) | ||
.explode() | ||
.unwrap() | ||
.into_series(), | ||
} | ||
} | ||
|
||
if has_inner_nulls(ca) { | ||
return inner(ca); | ||
}; | ||
|
||
match ca.inner_dtype() { | ||
dt if dt.is_numeric() => max_list_numerical(ca, &dt), | ||
_ => inner(ca), | ||
} | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters