Skip to content

jschiefner/horse-tracker-cvlab

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

79 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Lab course Horse detection

Usage

Run python horsinaround.py with the following arguments:

usage: horsinaround.py [-h] [--skip [SKIP]] [--single] [--multiple]
                       [--mode [MODE]]
                       input output frames
  • skip should be the amount of frames you want to skip at the beginning at the video (defaults to 0).
  • --single should be passed without parameter if a single horse should be tracked
  • --multiple should be passed without parameter if multiple horses should be tracked
  • --mode is the horse detection mode. Can be one of tinyyolo, yolo and background
  • input is the input video file path
  • output is the path for the video output. The .avi extension will automatically be appended, so only the filename needs to be given here
  • frames is the amount of frames that should be processed. 0 to go to end of file

Dependencies

  • Global
    • libopencv-dev
    • python-opencv
  • Python (3.6.9)
    • tensorflow (1.6.0)
    • keras (2.1.5)
    • numpy
    • imutils
    • opencv-python
    • Pillow
    • matplotlib
    • h5py
    • cvutils
    • opencv-contrib-python (4.0.0.21)
    • progress
    • filterpy

Aufbau

cropper

  • takes a frame and gives back a cropped out part in the correct aspect ratio

smoother

  • takes x,y,h and gives back smoothed versions of them
  • uses the last 50 frames

reader

  • read
  • skipframes

detector

  • uses box detector
  • gives back box

tracker

writer

horsinaround

  • main
  • argparse

About

Computer Vision Course Lab

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published