###Contents
- Data Science Process
- Data Acquisition
- [Feature Extraction and Transformation](#feature-extraction-and- transformation)
- Model Selection and Evaluation
- Machine Learning Algorithms
- Data Visualization
- References
#Machine Learning Algorithms back to top
Classification and Regression
- Generalized Linear Models [Notebook]
- Logistic Regression [Notebook]
- Support Vector Machine [Notebook]
- Random Forest [Notebook]
- Gradient Boosting Regression Trees [Notebook]
- Naive Bayes [Notebook]
Clustering and Dimensionality Reduction
Recommender Systems
- Collaborative Filtering
- Singular Value Decomposition (SVD)
- Alternating Least Squares (ALS)
#Feature Extraction and Transformation back to top
- Data Wrangling [Notebook]
- TF-IDF
- Word2Vec
- Standard Scaler
- Normalizer
- Encoding Categorical
- Principal Component Analysis
#Data Visualization back to top
- Matplotlib / Seaborn [Notebook]
- plot.ly
- d3.js
#Data Acquisition back to top
- Requests - Web scraping
- Mechanize - Web scraping
- BeautifulSoup - HTML
- Twitter API
- Marvel API
- Database (Relational database/SQL)
#Model Selection and Evaluation back to top
- Cross Validation
- Classification Metrics
- Regression Metrics
- Clustering Metrics
- Learning and Validation Curves
###References back to top
- The Elements of StatisticalLearning
- Pattern Recognition and Machine Learning
- Stanford CS229 - Machine Learning
- Stanford - Probabilistic GraphicalModels
- Harvard CS109 - Data Science
- Caltech - Learning From Data
- Carnegie Mellon University - Machine Learning
- University of Toronto - Neural Networks for Machine Learning
###Data Science Process back to top