Skip to content

sample code for a computer magagzine article about Apache Mahout

License

Notifications You must be signed in to change notification settings

juhrlass/musicwithtaste

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Used for the sample code of an article about getting started with the recommender support of Apache Mahout

#### Requirements ######################################################################################################

 * Java 6
 * maven2
 * python (with numpy)

python and numpy are necessary to run the script to fetch the example dataset, in ubuntu you should already have
python installed and can install numpy with "sudo apt-get install python-numpy"

#### Preparing the data ################################################################################################

Before you can run the examples, you have to download and prepare the music rating data.

Create a directory where the data should be stored:

	$mkdir /home/myuser/musicdata

Run the python script from the tools folder, which will download and convert the data. Grab a coffee as this will take
some time

	$python ./tools/dataset.py /home/myuser/musicdata

#### Running the examples ##############################################################################################

In order to run the example that computes similar artists, type:

	$mvn exec:java -Dexec.mainClass="io.ssc.musicwithtaste.examples.RunSimilarArtistsExample" -Dexec.args="/home/myuser/musicdata"

In order to run the example that discovers new artists for some users, type:

	$mvn exec:java -Dexec.mainClass="io.ssc.musicwithtaste.examples.RunDiscoverNewArtistsExample" -Dexec.args="/home/myuser/musicdata"

About

sample code for a computer magagzine article about Apache Mahout

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Java 99.9%
  • JavaScript 0.1%