Skip to content

Commit

Permalink
CSJ Data Preparation (#617)
Browse files Browse the repository at this point in the history
* workspace setup

* csj prepare done

* Change compute_fbank_musan.py t soft link

* add description

* change lhotse prepare csj command

* split train-dev here

* Add header

* remove debug

* save manifest_statistics

* generate transcript in Lhotse

* update comments in config file
  • Loading branch information
teowenshen authored Oct 18, 2022
1 parent d69bb82 commit 15c1a4a
Show file tree
Hide file tree
Showing 12 changed files with 2,032 additions and 0 deletions.
7 changes: 7 additions & 0 deletions egs/csj/ASR/.gitignore
Original file line number Diff line number Diff line change
@@ -0,0 +1,7 @@
librispeech_*.*
todelete*
lang*
notify_tg.py
finetune_*
misc.ini
.vscode/*
173 changes: 173 additions & 0 deletions egs/csj/ASR/local/compute_fbank_csj.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,173 @@
#!/usr/bin/env python3
# Copyright 2022 The University of Electro-Communications (Author: Teo Wen Shen) # noqa
#
# See ../../../../LICENSE for clarification regarding multiple authors
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.


import argparse
import logging
import os
from itertools import islice
from pathlib import Path
from random import Random
from typing import List, Tuple

import torch
from lhotse import (
CutSet,
Fbank,
FbankConfig,
# fmt: off
# See the following for why LilcomChunkyWriter is preferred
# https://github.com/k2-fsa/icefall/pull/404
# https://github.com/lhotse-speech/lhotse/pull/527
# fmt: on
LilcomChunkyWriter,
RecordingSet,
SupervisionSet,
)

ARGPARSE_DESCRIPTION = """
This script follows the espnet method of splitting the remaining core+noncore
utterances into valid and train cutsets at an index which is by default 4000.
In other words, the core+noncore utterances are shuffled, where 4000 utterances
of the shuffled set go to the `valid` cutset and are not subject to speed
perturbation. The remaining utterances become the `train` cutset and are speed-
perturbed (0.9x, 1.0x, 1.1x).
"""

# Torch's multithreaded behavior needs to be disabled or
# it wastes a lot of CPU and slow things down.
# Do this outside of main() in case it needs to take effect
# even when we are not invoking the main (e.g. when spawning subprocesses).
torch.set_num_threads(1)
torch.set_num_interop_threads(1)

RNG_SEED = 42


def make_cutset_blueprints(
manifest_dir: Path,
split: int,
) -> List[Tuple[str, CutSet]]:

cut_sets = []
# Create eval datasets
logging.info("Creating eval cuts.")
for i in range(1, 4):
cut_set = CutSet.from_manifests(
recordings=RecordingSet.from_file(
manifest_dir / f"csj_recordings_eval{i}.jsonl.gz"
),
supervisions=SupervisionSet.from_file(
manifest_dir / f"csj_supervisions_eval{i}.jsonl.gz"
),
)
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
cut_sets.append((f"eval{i}", cut_set))

# Create train and valid cuts
logging.info(
"Loading, trimming, and shuffling the remaining core+noncore cuts."
)
recording_set = RecordingSet.from_file(
manifest_dir / "csj_recordings_core.jsonl.gz"
) + RecordingSet.from_file(manifest_dir / "csj_recordings_noncore.jsonl.gz")
supervision_set = SupervisionSet.from_file(
manifest_dir / "csj_supervisions_core.jsonl.gz"
) + SupervisionSet.from_file(
manifest_dir / "csj_supervisions_noncore.jsonl.gz"
)

cut_set = CutSet.from_manifests(
recordings=recording_set,
supervisions=supervision_set,
)
cut_set = cut_set.trim_to_supervisions(keep_overlapping=False)
cut_set = cut_set.shuffle(Random(RNG_SEED))

logging.info(
"Creating valid and train cuts from core and noncore,"
f"split at {split}."
)
valid_set = CutSet.from_cuts(islice(cut_set, 0, split))

train_set = CutSet.from_cuts(islice(cut_set, split, None))
train_set = (
train_set + train_set.perturb_speed(0.9) + train_set.perturb_speed(1.1)
)

cut_sets.extend([("valid", valid_set), ("train", train_set)])

return cut_sets


def get_args():
parser = argparse.ArgumentParser(
description=ARGPARSE_DESCRIPTION,
formatter_class=argparse.ArgumentDefaultsHelpFormatter,
)

parser.add_argument(
"--manifest-dir", type=Path, help="Path to save manifests"
)
parser.add_argument(
"--fbank-dir", type=Path, help="Path to save fbank features"
)
parser.add_argument(
"--split", type=int, default=4000, help="Split at this index"
)

return parser.parse_args()


def main():
args = get_args()

extractor = Fbank(FbankConfig(num_mel_bins=80))
num_jobs = min(16, os.cpu_count())

formatter = (
"%(asctime)s %(levelname)s [%(filename)s:%(lineno)d] %(message)s"
)

logging.basicConfig(format=formatter, level=logging.INFO)

if (args.fbank_dir / ".done").exists():
logging.info(
"Previous fbank computed for CSJ found. "
f"Delete {args.fbank_dir / '.done'} to allow recomputing fbank."
)
return
else:
cut_sets = make_cutset_blueprints(args.manifest_dir, args.split)
for part, cut_set in cut_sets:
logging.info(f"Processing {part}")
cut_set = cut_set.compute_and_store_features(
extractor=extractor,
num_jobs=num_jobs,
storage_path=(args.fbank_dir / f"feats_{part}").as_posix(),
storage_type=LilcomChunkyWriter,
)
cut_set.to_file(args.manifest_dir / f"csj_cuts_{part}.jsonl.gz")

logging.info("All fbank computed for CSJ.")
(args.fbank_dir / ".done").touch()


if __name__ == "__main__":
main()
1 change: 1 addition & 0 deletions egs/csj/ASR/local/compute_fbank_musan.py
Loading

0 comments on commit 15c1a4a

Please sign in to comment.