-
Notifications
You must be signed in to change notification settings - Fork 504
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Add GigaAM NeMo transducer model for Russian ASR (#1467)
- Loading branch information
1 parent
b41f6d2
commit 707cf79
Showing
12 changed files
with
543 additions
and
21 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,119 @@ | ||
#!/usr/bin/env python3 | ||
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) | ||
|
||
from typing import Dict | ||
|
||
import onnx | ||
import torch | ||
import torchaudio | ||
from nemo.collections.asr.models import EncDecRNNTBPEModel | ||
from nemo.collections.asr.modules.audio_preprocessing import ( | ||
AudioToMelSpectrogramPreprocessor as NeMoAudioToMelSpectrogramPreprocessor, | ||
) | ||
from nemo.collections.asr.parts.preprocessing.features import ( | ||
FilterbankFeaturesTA as NeMoFilterbankFeaturesTA, | ||
) | ||
from onnxruntime.quantization import QuantType, quantize_dynamic | ||
|
||
|
||
def add_meta_data(filename: str, meta_data: Dict[str, str]): | ||
"""Add meta data to an ONNX model. It is changed in-place. | ||
Args: | ||
filename: | ||
Filename of the ONNX model to be changed. | ||
meta_data: | ||
Key-value pairs. | ||
""" | ||
model = onnx.load(filename) | ||
while len(model.metadata_props): | ||
model.metadata_props.pop() | ||
|
||
for key, value in meta_data.items(): | ||
meta = model.metadata_props.add() | ||
meta.key = key | ||
meta.value = str(value) | ||
|
||
onnx.save(model, filename) | ||
|
||
|
||
class FilterbankFeaturesTA(NeMoFilterbankFeaturesTA): | ||
def __init__(self, mel_scale: str = "htk", wkwargs=None, **kwargs): | ||
if "window_size" in kwargs: | ||
del kwargs["window_size"] | ||
if "window_stride" in kwargs: | ||
del kwargs["window_stride"] | ||
|
||
super().__init__(**kwargs) | ||
|
||
self._mel_spec_extractor: torchaudio.transforms.MelSpectrogram = ( | ||
torchaudio.transforms.MelSpectrogram( | ||
sample_rate=self._sample_rate, | ||
win_length=self.win_length, | ||
hop_length=self.hop_length, | ||
n_mels=kwargs["nfilt"], | ||
window_fn=self.torch_windows[kwargs["window"]], | ||
mel_scale=mel_scale, | ||
norm=kwargs["mel_norm"], | ||
n_fft=kwargs["n_fft"], | ||
f_max=kwargs.get("highfreq", None), | ||
f_min=kwargs.get("lowfreq", 0), | ||
wkwargs=wkwargs, | ||
) | ||
) | ||
|
||
|
||
class AudioToMelSpectrogramPreprocessor(NeMoAudioToMelSpectrogramPreprocessor): | ||
def __init__(self, mel_scale: str = "htk", **kwargs): | ||
super().__init__(**kwargs) | ||
kwargs["nfilt"] = kwargs["features"] | ||
del kwargs["features"] | ||
self.featurizer = ( | ||
FilterbankFeaturesTA( # Deprecated arguments; kept for config compatibility | ||
mel_scale=mel_scale, | ||
**kwargs, | ||
) | ||
) | ||
|
||
|
||
@torch.no_grad() | ||
def main(): | ||
model = EncDecRNNTBPEModel.from_config_file("./rnnt_model_config.yaml") | ||
ckpt = torch.load("./rnnt_model_weights.ckpt", map_location="cpu") | ||
model.load_state_dict(ckpt, strict=False) | ||
model.eval() | ||
|
||
with open("./tokens.txt", "w", encoding="utf-8") as f: | ||
for i, s in enumerate(model.joint.vocabulary): | ||
f.write(f"{s} {i}\n") | ||
f.write(f"<blk> {i+1}\n") | ||
print("Saved to tokens.txt") | ||
|
||
model.encoder.export("encoder.onnx") | ||
model.decoder.export("decoder.onnx") | ||
model.joint.export("joiner.onnx") | ||
|
||
meta_data = { | ||
"vocab_size": model.decoder.vocab_size, # not including the blank | ||
"pred_rnn_layers": model.decoder.pred_rnn_layers, | ||
"pred_hidden": model.decoder.pred_hidden, | ||
"normalize_type": "", | ||
"subsampling_factor": 4, | ||
"model_type": "EncDecRNNTBPEModel", | ||
"version": "1", | ||
"model_author": "https://github.com/salute-developers/GigaAM", | ||
"license": "https://github.com/salute-developers/GigaAM/blob/main/GigaAM%20License_NC.pdf", | ||
"language": "Russian", | ||
"is_giga_am": 1, | ||
} | ||
add_meta_data("encoder.onnx", meta_data) | ||
|
||
quantize_dynamic( | ||
model_input="encoder.onnx", | ||
model_output="encoder.int8.onnx", | ||
weight_type=QuantType.QUInt8, | ||
) | ||
|
||
|
||
if __name__ == "__main__": | ||
main() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,50 @@ | ||
#!/usr/bin/env bash | ||
# Copyright 2024 Xiaomi Corp. (authors: Fangjun Kuang) | ||
|
||
set -ex | ||
|
||
function install_nemo() { | ||
curl https://bootstrap.pypa.io/get-pip.py -o get-pip.py | ||
python3 get-pip.py | ||
|
||
pip install torch==2.4.0 torchaudio==2.4.0 -f https://download.pytorch.org/whl/torch_stable.html | ||
|
||
pip install -qq wget text-unidecode matplotlib>=3.3.2 onnx onnxruntime pybind11 Cython einops kaldi-native-fbank soundfile librosa | ||
pip install -qq ipython | ||
|
||
# sudo apt-get install -q -y sox libsndfile1 ffmpeg python3-pip ipython | ||
|
||
BRANCH='main' | ||
python3 -m pip install git+https://github.com/NVIDIA/NeMo.git@$BRANCH#egg=nemo_toolkit[asr] | ||
|
||
pip install numpy==1.26.4 | ||
} | ||
|
||
function download_files() { | ||
# curl -SL -O https://n-ws-q0bez.s3pd12.sbercloud.ru/b-ws-q0bez-jpv/GigaAM/rnnt_model_weights.ckpt | ||
# curl -SL -O https://n-ws-q0bez.s3pd12.sbercloud.ru/b-ws-q0bez-jpv/GigaAM/rnnt_model_config.yaml | ||
# curl -SL -O https://n-ws-q0bez.s3pd12.sbercloud.ru/b-ws-q0bez-jpv/GigaAM/example.wav | ||
# curl -SL -O https://n-ws-q0bez.s3pd12.sbercloud.ru/b-ws-q0bez-jpv/GigaAM/long_example.wav | ||
# curl -SL -O https://n-ws-q0bez.s3pd12.sbercloud.ru/b-ws-q0bez-jpv/GigaAM/tokenizer_all_sets.tar | ||
|
||
curl -SL -O https://huggingface.co/csukuangfj/tmp-files/resolve/main/GigaAM/rnnt/rnnt_model_weights.ckpt | ||
curl -SL -O https://huggingface.co/csukuangfj/tmp-files/resolve/main/GigaAM/rnnt/rnnt_model_config.yaml | ||
curl -SL -O https://huggingface.co/csukuangfj/tmp-files/resolve/main/GigaAM/example.wav | ||
curl -SL -O https://huggingface.co/csukuangfj/tmp-files/resolve/main/GigaAM/long_example.wav | ||
curl -SL -O https://huggingface.co/csukuangfj/tmp-files/resolve/main/GigaAM/GigaAM%20License_NC.pdf | ||
curl -SL -O https://huggingface.co/csukuangfj/tmp-files/resolve/main/GigaAM/rnnt/tokenizer_all_sets.tar | ||
tar -xf tokenizer_all_sets.tar && rm tokenizer_all_sets.tar | ||
ls -lh | ||
echo "---" | ||
ls -lh tokenizer_all_sets | ||
echo "---" | ||
} | ||
|
||
install_nemo | ||
download_files | ||
|
||
python3 ./export-onnx-rnnt.py | ||
ls -lh | ||
python3 ./test-onnx-rnnt.py | ||
rm -v encoder.onnx | ||
ls -lh |
Oops, something went wrong.