Skip to content

Commit

Permalink
Add VAD + Non-streaming ASR Python example. (#332)
Browse files Browse the repository at this point in the history
  • Loading branch information
csukuangfj authored Sep 22, 2023
1 parent cf199ad commit 969fff5
Show file tree
Hide file tree
Showing 2 changed files with 340 additions and 0 deletions.
3 changes: 3 additions & 0 deletions python-api-examples/README.md
Original file line number Diff line number Diff line change
Expand Up @@ -7,3 +7,6 @@
- [vad-remove-non-speech-segments.py](./vad-remove-non-speech-segments.py) It uses
[silero-vad](https://github.com/snakers4/silero-vad) to remove non-speech
segments and concatenate all speech segments into a single one.
- [vad-with-non-streaming-asr.py](./vad-with-non-streaming-asr.py) It shows
how to use VAD with a non-streaming ASR model for speech recognition from
a microphone
337 changes: 337 additions & 0 deletions python-api-examples/vad-with-non-streaming-asr.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,337 @@
#!/usr/bin/env python3
#
# Copyright (c) 2023 Xiaomi Corporation

"""
This file demonstrates how to use sherpa-onnx Python APIs
with VAD and non-streaming ASR models for speech recognition
from a microphone.
Note that you need a non-streaming model for this script.
(1) For paraformer
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--paraformer=/path/to/paraformer.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
--sample-rate=16000 \
--feature-dim=80
(2) For transducer models from icefall
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--tokens=/path/to/tokens.txt \
--encoder=/path/to/encoder.onnx \
--decoder=/path/to/decoder.onnx \
--joiner=/path/to/joiner.onnx \
--num-threads=2 \
--decoding-method=greedy_search \
--debug=false \
--sample-rate=16000 \
--feature-dim=80
(3) For Whisper models
./python-api-examples/vad-with-non-streaming-asr.py \
--silero-vad-model=/path/to/silero_vad.onnx \
--whisper-encoder=./sherpa-onnx-whisper-base.en/base.en-encoder.int8.onnx \
--whisper-decoder=./sherpa-onnx-whisper-base.en/base.en-decoder.int8.onnx \
--tokens=./sherpa-onnx-whisper-base.en/base.en-tokens.txt \
--whisper-task=transcribe \
--num-threads=2
Please refer to
https://k2-fsa.github.io/sherpa/onnx/index.html
to install sherpa-onnx and to download non-streaming pre-trained models
used in this file.
Please visit
https://github.com/snakers4/silero-vad/blob/master/files/silero_vad.onnx
to download silero_vad.onnx
For instance,
wget https://github.com/snakers4/silero-vad/raw/master/files/silero_vad.onnx
"""
import argparse
import sys
from pathlib import Path

import numpy as np

try:
import sounddevice as sd
except ImportError:
print("Please install sounddevice first. You can use")
print()
print(" pip install sounddevice")
print()
print("to install it")
sys.exit(-1)

import sherpa_onnx


def get_args():
parser = argparse.ArgumentParser(
formatter_class=argparse.ArgumentDefaultsHelpFormatter
)

parser.add_argument(
"--silero-vad-model",
type=str,
required=True,
help="Path to silero_vad.onnx",
)

parser.add_argument(
"--tokens",
type=str,
help="Path to tokens.txt",
)

parser.add_argument(
"--encoder",
default="",
type=str,
help="Path to the transducer encoder model",
)

parser.add_argument(
"--decoder",
default="",
type=str,
help="Path to the transducer decoder model",
)

parser.add_argument(
"--joiner",
default="",
type=str,
help="Path to the transducer joiner model",
)

parser.add_argument(
"--paraformer",
default="",
type=str,
help="Path to the model.onnx from Paraformer",
)

parser.add_argument(
"--num-threads",
type=int,
default=1,
help="Number of threads for neural network computation",
)

parser.add_argument(
"--whisper-encoder",
default="",
type=str,
help="Path to whisper encoder model",
)

parser.add_argument(
"--whisper-decoder",
default="",
type=str,
help="Path to whisper decoder model",
)

parser.add_argument(
"--whisper-language",
default="",
type=str,
help="""It specifies the spoken language in the input file.
Example values: en, fr, de, zh, jp.
Available languages for multilingual models can be found at
https://github.com/openai/whisper/blob/main/whisper/tokenizer.py#L10
If not specified, we infer the language from the input audio file.
""",
)

parser.add_argument(
"--whisper-task",
default="transcribe",
choices=["transcribe", "translate"],
type=str,
help="""For multilingual models, if you specify translate, the output
will be in English.
""",
)

parser.add_argument(
"--decoding-method",
type=str,
default="greedy_search",
help="""Valid values are greedy_search and modified_beam_search.
modified_beam_search is valid only for transducer models.
""",
)
parser.add_argument(
"--debug",
type=bool,
default=False,
help="True to show debug messages when loading modes.",
)

parser.add_argument(
"--sample-rate",
type=int,
default=16000,
help="""Sample rate of the feature extractor. Must match the one
expected by the model.""",
)

parser.add_argument(
"--feature-dim",
type=int,
default=80,
help="Feature dimension. Must match the one expected by the model",
)

return parser.parse_args()


def assert_file_exists(filename: str):
assert Path(filename).is_file(), (
f"{filename} does not exist!\n"
"Please refer to "
"https://k2-fsa.github.io/sherpa/onnx/pretrained_models/index.html to download it"
)


def create_recognizer(args) -> sherpa_onnx.OfflineRecognizer:
if args.encoder:
assert len(args.paraformer) == 0, args.paraformer
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder

assert_file_exists(args.encoder)
assert_file_exists(args.decoder)
assert_file_exists(args.joiner)

recognizer = sherpa_onnx.OfflineRecognizer.from_transducer(
encoder=args.encoder,
decoder=args.decoder,
joiner=args.joiner,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.paraformer:
assert len(args.whisper_encoder) == 0, args.whisper_encoder
assert len(args.whisper_decoder) == 0, args.whisper_decoder

assert_file_exists(args.paraformer)

recognizer = sherpa_onnx.OfflineRecognizer.from_paraformer(
paraformer=args.paraformer,
tokens=args.tokens,
num_threads=args.num_threads,
sample_rate=args.sample_rate,
feature_dim=args.feature_dim,
decoding_method=args.decoding_method,
debug=args.debug,
)
elif args.whisper_encoder:
assert_file_exists(args.whisper_encoder)
assert_file_exists(args.whisper_decoder)

recognizer = sherpa_onnx.OfflineRecognizer.from_whisper(
encoder=args.whisper_encoder,
decoder=args.whisper_decoder,
tokens=args.tokens,
num_threads=args.num_threads,
decoding_method=args.decoding_method,
debug=args.debug,
language=args.whisper_language,
task=args.whisper_task,
)
else:
raise ValueError("Please specify at least one model")

return recognizer


def main():
devices = sd.query_devices()
if len(devices) == 0:
print("No microphone devices found")
sys.exit(0)

print(devices)

# If you want to select a different input device, please use
# sd.default.device[0] = xxx
# where xxx is the device number

default_input_device_idx = sd.default.device[0]
print(f'Use default device: {devices[default_input_device_idx]["name"]}')

args = get_args()
assert_file_exists(args.tokens)
assert_file_exists(args.silero_vad_model)

assert args.num_threads > 0, args.num_threads

assert (
args.sample_rate == 16000
), f"Only sample rate 16000 is supported.Given: {args.sample_rate}"

print("Creating recognizer. Please wait...")
recognizer = create_recognizer(args)

config = sherpa_onnx.VadModelConfig()
config.silero_vad.model = args.silero_vad_model
config.silero_vad.min_silence_duration = 0.25
config.sample_rate = args.sample_rate

window_size = config.silero_vad.window_size

vad = sherpa_onnx.VoiceActivityDetector(config, buffer_size_in_seconds=100)

samples_per_read = int(0.1 * args.sample_rate) # 0.1 second = 100 ms

print("Started! Please speak")

buffer = []
texts = []
with sd.InputStream(channels=1, dtype="float32", samplerate=args.sample_rate) as s:
while True:
samples, _ = s.read(samples_per_read) # a blocking read
samples = samples.reshape(-1)

buffer = np.concatenate([buffer, samples])
while len(buffer) > window_size:
vad.accept_waveform(buffer[:window_size])
buffer = buffer[window_size:]

while not vad.empty():
stream = recognizer.create_stream()
stream.accept_waveform(args.sample_rate, vad.front.samples)

vad.pop()
recognizer.decode_stream(stream)

text = stream.result.text.strip().lower()
if len(text):
idx = len(texts)
texts.append(text)
print(f"{idx}: {text}")


if __name__ == "__main__":
try:
main()
except KeyboardInterrupt:
print("\nCaught Ctrl + C. Exiting")

0 comments on commit 969fff5

Please sign in to comment.