-
Notifications
You must be signed in to change notification settings - Fork 5.3k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
adding frame level dropout to TDNN+LSTM on AMI SDM1 #1264
Closed
Closed
Changes from 10 commits
Commits
Show all changes
15 commits
Select commit
Hold shift + click to select a range
e97df65
dropout_schedule: Adding dropout schedule to scripts
vimalmanohar 8d26ce0
dropout_schedule: Add set-dropout-proportion in nnet3 utils
vimalmanohar 1424c57
Changing option
vimalmanohar 818d495
dropout_schedule: Print dropout info
vimalmanohar 3342dd8
dropout_schedule: Adding more comments and fixing bug
vimalmanohar f17b0fc
dropout_schedule: Bug fix
vimalmanohar 5a6a9b1
dropout_schedule: Fixed bug
vimalmanohar 4ece089
dropout_schedule: Fixing logging
vimalmanohar 0dd66c1
dropout_schedule: Not printing shrinkage when its 1.0
vimalmanohar f6d25a2
Merging
vimalmanohar 635bb6e
Merge branch 'master' of github.com:kaldi-asr/kaldi into dropout_sche…
vimalmanohar 7109c43
change dropout_parser strategy
GaofengCheng 5435f23
adding frame level dropout to TDNN+LSTM on AMI SDM1 #1248
GaofengCheng 7899760
dropout_schedule: Add strict checking of dropout schedule
vimalmanohar 18404a9
Merge branch 'dropout_schedule' into nnet3-dropout
vimalmanohar File filter
Filter by extension
Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,295 @@ | ||
#!/bin/bash | ||
# Copyright 2016 University of Chinese Academy of Sciences (Author: Cheng Gaofeng) | ||
# Apache 2.0 | ||
|
||
# same as 1i but with frame level dropout | ||
# (num-params 1g:21309812 1i: 43447156) | ||
# results on sdm1 using ihm ali | ||
#System tdnn_lstm1i_sp_bi_ihmali_ld5 | ||
#WER on dev 37.6 36.7 | ||
#WER on eval 40.9 39.9 | ||
#Final train prob -0.114135 -0.118 | ||
#Final valid prob -0.245208 -0.246 | ||
#Final train prob (xent) -1.47648 -1.54 | ||
#Final valid prob (xent) -2.16365 -2.10 | ||
|
||
|
||
set -e -o pipefail | ||
|
||
# First the options that are passed through to run_ivector_common.sh | ||
# (some of which are also used in this script directly). | ||
stage=0 | ||
mic=ihm | ||
nj=30 | ||
min_seg_len=1.55 | ||
use_ihm_ali=false | ||
train_set=train_cleaned | ||
gmm=tri3_cleaned # the gmm for the target data | ||
ihm_gmm=tri3 # the gmm for the IHM system (if --use-ihm-ali true). | ||
num_threads_ubm=32 | ||
nnet3_affix=_cleaned # cleanup affix for nnet3 and chain dirs, e.g. _cleaned | ||
dropout_schedule='0,0@0.20,0.5@0.50,0@0.50,0' | ||
chunk_width=150 | ||
chunk_left_context=40 | ||
chunk_right_context=0 | ||
label_delay=5 | ||
# The rest are configs specific to this script. Most of the parameters | ||
# are just hardcoded at this level, in the commands below. | ||
train_stage=-10 | ||
tree_affix= # affix for tree directory, e.g. "a" or "b", in case we change the configuration. | ||
tlstm_affix=1i #affix for TDNN-LSTM directory, e.g. "a" or "b", in case we change the configuration. | ||
common_egs_dir= # you can set this to use previously dumped egs. | ||
|
||
|
||
# decode options | ||
extra_left_context=50 | ||
frames_per_chunk= | ||
|
||
# End configuration section. | ||
echo "$0 $@" # Print the command line for logging | ||
|
||
. ./cmd.sh | ||
. ./path.sh | ||
. ./utils/parse_options.sh | ||
|
||
|
||
if ! cuda-compiled; then | ||
cat <<EOF && exit 1 | ||
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA | ||
If you want to use GPUs (and have them), go to src/, and configure and make on a machine | ||
where "nvcc" is installed. | ||
EOF | ||
fi | ||
|
||
|
||
local/nnet3/run_ivector_common.sh --stage $stage \ | ||
--mic $mic \ | ||
--nj $nj \ | ||
--min-seg-len $min_seg_len \ | ||
--train-set $train_set \ | ||
--gmm $gmm \ | ||
--num-threads-ubm $num_threads_ubm \ | ||
--nnet3-affix "$nnet3_affix" | ||
|
||
# Note: the first stage of the following script is stage 8. | ||
local/nnet3/prepare_lores_feats.sh --stage $stage \ | ||
--mic $mic \ | ||
--nj $nj \ | ||
--min-seg-len $min_seg_len \ | ||
--use-ihm-ali $use_ihm_ali \ | ||
--train-set $train_set | ||
|
||
if $use_ihm_ali; then | ||
gmm_dir=exp/ihm/${ihm_gmm} | ||
ali_dir=exp/${mic}/${ihm_gmm}_ali_${train_set}_sp_comb_ihmdata | ||
lores_train_data_dir=data/$mic/${train_set}_ihmdata_sp_comb | ||
tree_dir=exp/$mic/chain${nnet3_affix}/tree_bi${tree_affix}_ihmdata | ||
lat_dir=exp/$mic/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats_ihmdata | ||
dir=exp/$mic/chain${nnet3_affix}/tdnn_lstm${tlstm_affix}_sp_bi_ihmali | ||
# note: the distinction between when we use the 'ihmdata' suffix versus | ||
# 'ihmali' is pretty arbitrary. | ||
else | ||
gmm_dir=exp/${mic}/$gmm | ||
ali_dir=exp/${mic}/${gmm}_ali_${train_set}_sp_comb | ||
lores_train_data_dir=data/$mic/${train_set}_sp_comb | ||
tree_dir=exp/$mic/chain${nnet3_affix}/tree_bi${tree_affix} | ||
lat_dir=exp/$mic/chain${nnet3_affix}/${gmm}_${train_set}_sp_comb_lats | ||
dir=exp/$mic/chain${nnet3_affix}/tdnn_lstm${tlstm_affix}_sp_bi | ||
fi | ||
|
||
if [ $label_delay -gt 0 ]; then dir=${dir}_ld$label_delay; fi | ||
|
||
train_data_dir=data/$mic/${train_set}_sp_hires_comb | ||
train_ivector_dir=exp/$mic/nnet3${nnet3_affix}/ivectors_${train_set}_sp_hires_comb | ||
final_lm=`cat data/local/lm/final_lm` | ||
LM=$final_lm.pr1-7 | ||
|
||
|
||
for f in $gmm_dir/final.mdl $lores_train_data_dir/feats.scp \ | ||
$train_data_dir/feats.scp $train_ivector_dir/ivector_online.scp; do | ||
[ ! -f $f ] && echo "$0: expected file $f to exist" && exit 1 | ||
done | ||
|
||
|
||
if [ $stage -le 11 ]; then | ||
if [ -f $ali_dir/ali.1.gz ]; then | ||
echo "$0: alignments in $ali_dir appear to already exist. Please either remove them " | ||
echo " ... or use a later --stage option." | ||
exit 1 | ||
fi | ||
echo "$0: aligning perturbed, short-segment-combined ${maybe_ihm}data" | ||
steps/align_fmllr.sh --nj $nj --cmd "$train_cmd" \ | ||
${lores_train_data_dir} data/lang $gmm_dir $ali_dir | ||
fi | ||
|
||
[ ! -f $ali_dir/ali.1.gz ] && echo "$0: expected $ali_dir/ali.1.gz to exist" && exit 1 | ||
|
||
if [ $stage -le 12 ]; then | ||
echo "$0: creating lang directory with one state per phone." | ||
# Create a version of the lang/ directory that has one state per phone in the | ||
# topo file. [note, it really has two states.. the first one is only repeated | ||
# once, the second one has zero or more repeats.] | ||
if [ -d data/lang_chain ]; then | ||
if [ data/lang_chain/L.fst -nt data/lang/L.fst ]; then | ||
echo "$0: data/lang_chain already exists, not overwriting it; continuing" | ||
else | ||
echo "$0: data/lang_chain already exists and seems to be older than data/lang..." | ||
echo " ... not sure what to do. Exiting." | ||
exit 1; | ||
fi | ||
else | ||
cp -r data/lang data/lang_chain | ||
silphonelist=$(cat data/lang_chain/phones/silence.csl) || exit 1; | ||
nonsilphonelist=$(cat data/lang_chain/phones/nonsilence.csl) || exit 1; | ||
# Use our special topology... note that later on may have to tune this | ||
# topology. | ||
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >data/lang_chain/topo | ||
fi | ||
fi | ||
|
||
if [ $stage -le 13 ]; then | ||
# Get the alignments as lattices (gives the chain training more freedom). | ||
# use the same num-jobs as the alignments | ||
steps/align_fmllr_lats.sh --nj 100 --cmd "$train_cmd" ${lores_train_data_dir} \ | ||
data/lang $gmm_dir $lat_dir | ||
rm $lat_dir/fsts.*.gz # save space | ||
fi | ||
|
||
if [ $stage -le 14 ]; then | ||
# Build a tree using our new topology. We know we have alignments for the | ||
# speed-perturbed data (local/nnet3/run_ivector_common.sh made them), so use | ||
# those. | ||
if [ -f $tree_dir/final.mdl ]; then | ||
echo "$0: $tree_dir/final.mdl already exists, refusing to overwrite it." | ||
exit 1; | ||
fi | ||
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \ | ||
--context-opts "--context-width=2 --central-position=1" \ | ||
--leftmost-questions-truncate -1 \ | ||
--cmd "$train_cmd" 4200 ${lores_train_data_dir} data/lang_chain $ali_dir $tree_dir | ||
fi | ||
|
||
xent_regularize=0.1 | ||
|
||
if [ $stage -le 15 ]; then | ||
echo "$0: creating neural net configs using the xconfig parser"; | ||
|
||
num_targets=$(tree-info $tree_dir/tree |grep num-pdfs|awk '{print $2}') | ||
learning_rate_factor=$(echo "print 0.5/$xent_regularize" | python) | ||
|
||
mkdir -p $dir/configs | ||
cat <<EOF > $dir/configs/network.xconfig | ||
input dim=100 name=ivector | ||
input dim=40 name=input | ||
|
||
# please note that it is important to have input layer with the name=input | ||
# as the layer immediately preceding the fixed-affine-layer to enable | ||
# the use of short notation for the descriptor | ||
fixed-affine-layer name=lda input=Append(-1,0,1,ReplaceIndex(ivector, t, 0)) affine-transform-file=$dir/configs/lda.mat | ||
|
||
# the first splicing is moved before the lda layer, so no splicing here | ||
relu-renorm-layer name=tdnn1 dim=1024 | ||
relu-renorm-layer name=tdnn2 input=Append(-1,0,1) dim=1024 | ||
relu-renorm-layer name=tdnn3 input=Append(-1,0,1) dim=1024 | ||
|
||
# check steps/libs/nnet3/xconfig/lstm.py for the other options and defaults | ||
lstmp-layer name=lstm1 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 dropout-proportion=0.0 | ||
relu-renorm-layer name=tdnn4 input=Append(-3,0,3) dim=1024 | ||
relu-renorm-layer name=tdnn5 input=Append(-3,0,3) dim=1024 | ||
relu-renorm-layer name=tdnn6 input=Append(-3,0,3) dim=1024 | ||
lstmp-layer name=lstm2 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 dropout-proportion=0.0 | ||
relu-renorm-layer name=tdnn7 input=Append(-3,0,3) dim=1024 | ||
relu-renorm-layer name=tdnn8 input=Append(-3,0,3) dim=1024 | ||
relu-renorm-layer name=tdnn9 input=Append(-3,0,3) dim=1024 | ||
lstmp-layer name=lstm3 cell-dim=1024 recurrent-projection-dim=256 non-recurrent-projection-dim=256 delay=-3 dropout-proportion=0.0 | ||
|
||
## adding the layers for chain branch | ||
output-layer name=output input=lstm3 output-delay=$label_delay include-log-softmax=false dim=$num_targets max-change=1.5 | ||
|
||
# adding the layers for xent branch | ||
# This block prints the configs for a separate output that will be | ||
# trained with a cross-entropy objective in the 'chain' models... this | ||
# has the effect of regularizing the hidden parts of the model. we use | ||
# 0.5 / args.xent_regularize as the learning rate factor- the factor of | ||
# 0.5 / args.xent_regularize is suitable as it means the xent | ||
# final-layer learns at a rate independent of the regularization | ||
# constant; and the 0.5 was tuned so as to make the relative progress | ||
# similar in the xent and regular final layers. | ||
output-layer name=output-xent input=lstm3 output-delay=$label_delay dim=$num_targets learning-rate-factor=$learning_rate_factor max-change=1.5 | ||
|
||
EOF | ||
|
||
steps/nnet3/xconfig_to_configs.py --xconfig-file $dir/configs/network.xconfig --config-dir $dir/configs/ | ||
fi | ||
|
||
if [ $stage -le 16 ]; then | ||
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then | ||
utils/create_split_dir.pl \ | ||
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/ami-$(date +'%m_%d_%H_%M')/s5b/$dir/egs/storage $dir/egs/storage | ||
fi | ||
|
||
steps/nnet3/chain/train.py --stage $train_stage \ | ||
--cmd "$decode_cmd" \ | ||
--feat.online-ivector-dir $train_ivector_dir \ | ||
--feat.cmvn-opts "--norm-means=false --norm-vars=false" \ | ||
--chain.xent-regularize $xent_regularize \ | ||
--chain.leaky-hmm-coefficient 0.1 \ | ||
--chain.l2-regularize 0.00005 \ | ||
--chain.apply-deriv-weights false \ | ||
--chain.lm-opts="--num-extra-lm-states=2000" \ | ||
--egs.dir "$common_egs_dir" \ | ||
--egs.opts "--frames-overlap-per-eg 0" \ | ||
--egs.chunk-width $chunk_width \ | ||
--egs.chunk-left-context $chunk_left_context \ | ||
--egs.chunk-right-context $chunk_right_context \ | ||
--trainer.dropout-schedule $dropout_schedule \ | ||
--trainer.num-chunk-per-minibatch 64 \ | ||
--trainer.frames-per-iter 1500000 \ | ||
--trainer.num-epochs 4 \ | ||
--trainer.optimization.shrink-value 0.99 \ | ||
--trainer.optimization.num-jobs-initial 2 \ | ||
--trainer.optimization.num-jobs-final 12 \ | ||
--trainer.optimization.initial-effective-lrate 0.001 \ | ||
--trainer.optimization.final-effective-lrate 0.0001 \ | ||
--trainer.max-param-change 2.0 \ | ||
--trainer.deriv-truncate-margin 8 \ | ||
--cleanup.remove-egs true \ | ||
--feat-dir $train_data_dir \ | ||
--tree-dir $tree_dir \ | ||
--lat-dir $lat_dir \ | ||
--dir $dir | ||
fi | ||
|
||
|
||
graph_dir=$dir/graph_${LM} | ||
if [ $stage -le 17 ]; then | ||
# Note: it might appear that this data/lang_chain directory is mismatched, and it is as | ||
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from | ||
# the lang directory. | ||
utils/mkgraph.sh --left-biphone --self-loop-scale 1.0 data/lang_${LM} $dir $graph_dir | ||
fi | ||
|
||
if [ $stage -le 18 ]; then | ||
rm $dir/.error 2>/dev/null || true | ||
|
||
[ -z $extra_left_context ] && extra_left_context=$chunk_left_context; | ||
[ -z $frames_per_chunk ] && frames_per_chunk=$chunk_width; | ||
|
||
for decode_set in dev eval; do | ||
( | ||
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \ | ||
--nj $nj --cmd "$decode_cmd" \ | ||
There was a problem hiding this comment. Choose a reason for hiding this commentThe reason will be displayed to describe this comment to others. Learn more. Check that nj < the number of speakers in dev and eval for both sdm and ihm. Otherwise it may crash. |
||
--extra-left-context $extra_left_context \ | ||
--frames-per-chunk "$frames_per_chunk" \ | ||
--online-ivector-dir exp/$mic/nnet3${nnet3_affix}/ivectors_${decode_set}_hires \ | ||
--scoring-opts "--min-lmwt 5 " \ | ||
$graph_dir data/$mic/${decode_set}_hires $dir/decode_${decode_set} || exit 1; | ||
) || touch $dir/.error & | ||
done | ||
wait | ||
if [ -f $dir/.error ]; then | ||
echo "$0: something went wrong in decoding" | ||
exit 1 | ||
fi | ||
fi | ||
exit 0 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.
Add this suggestion to a batch that can be applied as a single commit.
This suggestion is invalid because no changes were made to the code.
Suggestions cannot be applied while the pull request is closed.
Suggestions cannot be applied while viewing a subset of changes.
Only one suggestion per line can be applied in a batch.
Add this suggestion to a batch that can be applied as a single commit.
Applying suggestions on deleted lines is not supported.
You must change the existing code in this line in order to create a valid suggestion.
Outdated suggestions cannot be applied.
This suggestion has been applied or marked resolved.
Suggestions cannot be applied from pending reviews.
Suggestions cannot be applied on multi-line comments.
Suggestions cannot be applied while the pull request is queued to merge.
Suggestion cannot be applied right now. Please check back later.
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
This will now crash with the new change. But it seems like in some cases this step change is required. So should I change the script to accept the step changes and retain the order?