Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Added PerDimWeightedAverage component for chain models in SWBD, works… #461

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
182 changes: 182 additions & 0 deletions egs/swbd/s5c/local/chain/run_tdnn_4q.sh
Original file line number Diff line number Diff line change
@@ -0,0 +1,182 @@
#!/bin/bash

# this is based on Dan's tdnn_2o script
# it has a different splicing configuration
# it uses the PerDimensionWeightedAverage pooling in place of the Jesus layer

# it relies on new steps/nnet3/chain/train_tdnn_b.sh script which accepts more
# parameters are calls new config generator steps/nnet3/tdnn/make_configs.py
# which is more in line with other config generators.

set -e

#%WER 11.1 | 1831 21395 | 90.2 6.3 3.5 1.3 11.1 46.6 | exp/chain/tdnn_v1_trial6_sp/decode_eval2000_sw1_fsh_fg/score_12_0.0/eval2000_hires.ctm.swbd.filt.sys
#%WER 16.6 | 4459 42989 | 85.2 9.5 5.3 1.8 16.6 53.4 | exp/chain/tdnn_v1_trial6_sp/decode_eval2000_sw1_fsh_fg/score_11_0.0/eval2000_hires.ctm.filt.sys
#%WER 15.59 [ 7671 / 49204, 883 ins, 2234 del, 4554 sub ] exp/chain/tdnn_v1_trial6_sp/decode_train_dev_sw1_fsh_fg/wer_12_0.0


# configs for 'chain'
affix=
stage=10
train_stage=-10
get_egs_stage=-10
speed_perturb=true
dir=exp/chain/tdnn_4q # Note: _sp will get added to this if $speed_perturb == true.
decode_iter=

# TDNN options
# this script uses the new tdnn config generator so it needs a final 0 to reflect that the final layer input has no splicing
splice_indexes="-2,-1,0,1,2 -1,0,2 -3,0,3 -6,-3,0,3 -6,-3,0,3"
# smoothing options
pool_window=7
pool_type='per-dim-weighted-average'
pool_lpfilter_width=

# training options
num_epochs=4
initial_effective_lrate=0.001
final_effective_lrate=0.0001
leftmost_questions_truncate=-1
max_param_change=1.0
final_layer_normalize_target=0.5
num_jobs_initial=3
num_jobs_final=16
minibatch_size=64
relu_dim=700
frames_per_eg=150
remove_egs=false
common_egs_dir=



# End configuration section.
echo "$0 $@" # Print the command line for logging

. cmd.sh
. ./path.sh
. ./utils/parse_options.sh

if ! cuda-compiled; then
cat <<EOF && exit 1
This script is intended to be used with GPUs but you have not compiled Kaldi with CUDA
If you want to use GPUs (and have them), go to src/, and configure and make on a machine
where "nvcc" is installed.
EOF
fi

# The iVector-extraction and feature-dumping parts are the same as the standard
# nnet3 setup, and you can skip them by setting "--stage 8" if you have already
# run those things.

suffix=
if [ "$speed_perturb" == "true" ]; then
suffix=_sp
fi

dir=${dir}${affix:+_$affix}$suffix
train_set=train_nodup$suffix
ali_dir=exp/tri4_ali_nodup$suffix
treedir=exp/chain/tri5_2o_tree$suffix
lang=data/lang_chain_2o


# if we are using the speed-perturbed data we need to generate
# alignments for it.
local/nnet3/run_ivector_common.sh --stage $stage \
--speed-perturb $speed_perturb \
--generate-alignments $speed_perturb || exit 1;


if [ $stage -le 9 ]; then
# Get the alignments as lattices (gives the CTC training more freedom).
# use the same num-jobs as the alignments
nj=$(cat exp/tri4_ali_nodup$suffix/num_jobs) || exit 1;
steps/align_fmllr_lats.sh --nj $nj --cmd "$train_cmd" data/$train_set \
data/lang exp/tri4 exp/tri4_lats_nodup$suffix
rm exp/tri4_lats_nodup$suffix/fsts.*.gz # save space
fi


if [ $stage -le 10 ]; then
# Create a version of the lang/ directory that has one state per phone in the
# topo file. [note, it really has two states.. the first one is only repeated
# once, the second one has zero or more repeats.]
rm -rf $lang
cp -r data/lang $lang
silphonelist=$(cat $lang/phones/silence.csl) || exit 1;
nonsilphonelist=$(cat $lang/phones/nonsilence.csl) || exit 1;
# Use our special topology... note that later on may have to tune this
# topology.
steps/nnet3/chain/gen_topo.py $nonsilphonelist $silphonelist >$lang/topo
fi

if [ $stage -le 11 ]; then
# Build a tree using our new topology.
steps/nnet3/chain/build_tree.sh --frame-subsampling-factor 3 \
--leftmost-questions-truncate $leftmost_questions_truncate \
--cmd "$train_cmd" 9000 data/$train_set $lang $ali_dir $treedir
fi

if [ $stage -le 12 ]; then
if [[ $(hostname -f) == *.clsp.jhu.edu ]] && [ ! -d $dir/egs/storage ]; then
utils/create_split_dir.pl \
/export/b0{5,6,7,8}/$USER/kaldi-data/egs/swbd-$(date +'%m_%d_%H_%M')/s5c/$dir/egs/storage $dir/egs/storage
fi

touch $dir/egs/.nodelete # keep egs around when that run dies.

steps/nnet3/chain/train_tdnn_b.sh --stage $train_stage \
--apply-deriv-weights false \
--lm-opts "--num-extra-lm-states=2000" \
--get-egs-stage $get_egs_stage \
--minibatch-size $minibatch_size \
--egs-opts "--frames-overlap-per-eg 0" \
--frames-per-eg $frames_per_eg \
--num-epochs $num_epochs --num-jobs-initial $num_jobs_initial --num-jobs-final $num_jobs_final \
--splice-indexes "$splice_indexes" \
--pool-type "$pool_type" \
--pool-window "$pool_window" \
--pool-lpfilter-width "$pool_lpfilter_width" \
--feat-type raw \
--online-ivector-dir exp/nnet3/ivectors_${train_set} \
--cmvn-opts "--norm-means=false --norm-vars=false" \
--initial-effective-lrate $initial_effective_lrate --final-effective-lrate $final_effective_lrate \
--max-param-change $max_param_change \
--final-layer-normalize-target $final_layer_normalize_target \
--relu-dim $relu_dim \
--cmd "$decode_cmd" \
--remove-egs $remove_egs \
--egs-dir "$common_egs_dir" \
data/${train_set}_hires $treedir exp/tri4_lats_nodup$suffix $dir || exit 1;
fi

if [ $stage -le 13 ]; then
# Note: it might appear that this $lang directory is mismatched, and it is as
# far as the 'topo' is concerned, but this script doesn't read the 'topo' from
# the lang directory.
utils/mkgraph.sh --self-loop-scale 1.0 data/lang_sw1_tg $dir $dir/graph_sw1_tg
fi

decode_suff=sw1_tg
graph_dir=$dir/graph_sw1_tg
if [ $stage -le 14 ]; then
iter_opts=
if [ ! -z $decode_iter ]; then
iter_opts=" --iter $decode_iter "
fi
for decode_set in train_dev eval2000; do
(
steps/nnet3/decode.sh --acwt 1.0 --post-decode-acwt 10.0 \
--nj 50 --cmd "$decode_cmd" $iter_opts \
--online-ivector-dir exp/nnet3/ivectors_${decode_set} \
$graph_dir data/${decode_set}_hires $dir/decode_${decode_set}_${decode_suff} || exit 1;
if $has_fisher; then
steps/lmrescore_const_arpa.sh --cmd "$decode_cmd" \
data/lang_sw1_{tg,fsh_fg} data/${decode_set}_hires \
$dir/decode_${decode_set}_sw1_{tg,fsh_fg} || exit 1;
fi
) &
done
fi
wait;
exit 0;
Loading