forked from awslabs/gluonts
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
initial BernsteinQuantileDistribution
- Loading branch information
Showing
1 changed file
with
193 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,193 @@ | ||
# Copyright 2018 Amazon.com, Inc. or its affiliates. All Rights Reserved. | ||
# | ||
# Licensed under the Apache License, Version 2.0 (the "License"). | ||
# You may not use this file except in compliance with the License. | ||
# A copy of the License is located at | ||
# | ||
# http://www.apache.org/licenses/LICENSE-2.0 | ||
# | ||
# or in the "license" file accompanying this file. This file is distributed | ||
# on an "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either | ||
# express or implied. See the License for the specific language governing | ||
# permissions and limitations under the License. | ||
|
||
from typing import Dict, List, Optional, Tuple | ||
|
||
import torch | ||
import torch.nn.functional as F | ||
from torch.distributions import Distribution, AffineTransform, TransformedDistribution | ||
|
||
from gluonts.core.component import validated | ||
from .distribution_output import DistributionOutput | ||
|
||
|
||
class BernsteinQuantileDistribution(Distribution): | ||
r""" | ||
Distribution class for quantile function approximation using Bernstein polynomials. | ||
Parameters | ||
---------- | ||
coefficients | ||
Tensor of shape (*batch_shape, degree+1) containing the coefficients of | ||
Bernstein basis polynomials. | ||
degree | ||
Degree of Bernstein polynomials. | ||
""" | ||
|
||
def __init__( | ||
self, | ||
coefficients: torch.Tensor, | ||
degree: int, | ||
validate_args: bool = False, | ||
) -> None: | ||
self.coefficients = coefficients | ||
self.degree = degree | ||
|
||
batch_shape = coefficients.shape[:-1] | ||
super().__init__(batch_shape=batch_shape, validate_args=validate_args) | ||
|
||
def bernstein_basis(self, alpha: torch.Tensor, k: int) -> torch.Tensor: | ||
"""Compute k-th Bernstein basis polynomial of degree n.""" | ||
n = self.degree | ||
# Compute binomial coefficient | ||
coef = torch.exp( | ||
torch.lgamma(torch.tensor(n + 1.)) | ||
- torch.lgamma(torch.tensor(k + 1.)) | ||
- torch.lgamma(torch.tensor(n - k + 1.)) | ||
) | ||
return coef * (alpha ** k) * ((1 - alpha) ** (n - k)) | ||
|
||
def quantile(self, alpha: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Evaluate quantile function at specified levels using Bernstein polynomials. | ||
Parameters | ||
---------- | ||
alpha | ||
Tensor of shape (*batch_shape) containing quantile levels in [0,1] | ||
Returns | ||
------- | ||
Tensor | ||
Quantile values of shape (*batch_shape) | ||
""" | ||
# Ensure alpha is in [0,1] | ||
alpha = torch.clamp(alpha, 0, 1) | ||
|
||
# Expand alpha for broadcasting | ||
alpha_expanded = alpha.unsqueeze(-1) | ||
|
||
# Compute all Bernstein basis polynomials | ||
basis_values = torch.stack([ | ||
self.bernstein_basis(alpha_expanded, k) | ||
for k in range(self.degree + 1) | ||
], dim=-1) | ||
|
||
# Compute quantile values as linear combination of basis polynomials | ||
return torch.sum(basis_values * self.coefficients, dim=-1) | ||
|
||
def cdf(self, y: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Approximate the CDF using binary search on the quantile function. | ||
Parameters | ||
---------- | ||
y | ||
Tensor of shape (*batch_shape) containing values | ||
Returns | ||
------- | ||
Tensor | ||
CDF values of shape (*batch_shape) | ||
""" | ||
# Initialize search bounds | ||
lower = torch.zeros_like(y) | ||
upper = torch.ones_like(y) | ||
|
||
# Binary search | ||
for _ in range(10): # Number of iterations for desired precision | ||
mid = (lower + upper) / 2 | ||
q_mid = self.quantile(mid) | ||
lower = torch.where(q_mid < y, mid, lower) | ||
upper = torch.where(q_mid < y, upper, mid) | ||
|
||
return (lower + upper) / 2 | ||
|
||
def rsample(self, sample_shape: torch.Size = torch.Size()) -> torch.Tensor: | ||
""" | ||
Generate random samples using inverse transform sampling. | ||
""" | ||
alpha = torch.rand( | ||
sample_shape + self.batch_shape, | ||
device=self.coefficients.device, | ||
) | ||
return self.quantile(alpha) | ||
|
||
def crps(self, y: torch.Tensor) -> torch.Tensor: | ||
""" | ||
Compute the Continuous Ranked Probability Score. | ||
""" | ||
# Approximate CRPS using numerical integration | ||
alpha = torch.linspace(0, 1, 100, device=y.device) | ||
quantiles = self.quantile(alpha) | ||
|
||
# Compute integrand | ||
indicator = (quantiles.unsqueeze(-1) >= y.unsqueeze(-2)).float() | ||
integrand = (indicator - alpha.unsqueeze(-1)) ** 2 | ||
|
||
# Numerical integration using trapezoidal rule | ||
return torch.trapz(integrand, alpha, dim=-2) | ||
|
||
|
||
class BernsteinQuantileOutput(DistributionOutput): | ||
r""" | ||
Distribution output class for quantile function approximation using Bernstein polynomials. | ||
Parameters | ||
---------- | ||
degree | ||
Degree of Bernstein polynomials to use. | ||
""" | ||
|
||
distr_cls: type = BernsteinQuantileDistribution | ||
|
||
@validated() | ||
def __init__(self, degree: int) -> None: | ||
super().__init__() | ||
|
||
assert isinstance(degree, int) and degree > 0, \ | ||
"degree must be a positive integer" | ||
|
||
self.degree = degree | ||
self.args_dim: Dict[str, int] = {"coefficients": degree + 1} | ||
|
||
def domain_map(self, coefficients: torch.Tensor) -> Tuple[torch.Tensor]: | ||
""" | ||
Ensures coefficients are monotonically increasing by applying cumulative sum | ||
of positive values. | ||
""" | ||
# Apply softplus and cumsum to ensure monotonicity | ||
return (F.softplus(coefficients).cumsum(dim=-1),) | ||
|
||
def distribution( | ||
self, | ||
distr_args, | ||
loc: Optional[torch.Tensor] = None, | ||
scale: Optional[torch.Tensor] = None, | ||
) -> Distribution: | ||
""" | ||
Create distribution instance with given parameters. | ||
""" | ||
coefficients = distr_args[0] | ||
distr = self.distr_cls(coefficients, self.degree) | ||
|
||
if scale is None: | ||
return distr | ||
else: | ||
return TransformedDistribution( | ||
distr, [AffineTransform(loc=loc, scale=scale)] | ||
) | ||
|
||
@property | ||
def event_shape(self) -> Tuple: | ||
return () |