Collection of Monte Carlo methods with examples in Julia.
- Introduction:
- Estimating
$\pi$ - Monte Carlo Integration
- Pseudo-random numbers
- Estimating
- Transformaion, rejection and reweighting methods
- The inversion method
- Box-Muller method for generating std. normal variables
- The rejection sampling algorithm
- The importance sampling algorithm
- The Gibbs sampler
- The Gibbs sampler for bivariate normal distribution
- The Poisson change-point model
- The Metropolis-Hastings
- Metropolis-Hastings Random Walk
- Bayesian probit model
- Data augmentation strategies
- Gaussian mixture model
- The Ising model
- The Reversible Jump algorithm
- Gaussian mixture model (revisited)