Optimization of Transmit Beamforming With Channel Covariances for MISO Downlink Assisted by Reconfigurable Intelligent Surfaces
@INPROCEEDINGS{10595028,
author={Kyaw, Khin Thandar and Santipach, Wiroonsak and Mamat, Kritsada and Kaemarungsi, Kamol and Fukawa, Kazuhiko},
booktitle={2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON)},
title={Optimization of Transmit Beamforming Using Channel Covariances for MISO Downlink Assisted by Reconfigurable Intelligent Surfaces},
year={2024},
volume={},
number={},
pages={1-6},
keywords={Array signal processing;Neural networks;Reconfigurable intelligent surfaces;MISO communication;Downlink;Numerical simulation;Telecommunications;Beamforming;optimization;downlink;RIS;channel covariance;MISO;neural network},
doi={10.1109/ECTI-CON60892.2024.10595028}}
The implementation of the neural network model is adapted from TianLin0509/BF-design-with-DL to meet our system requriements.
Important
For details on the custom Downlink Beamforming with Reconfigurable Intelligent Surface environment, please refer to the paper:
K. T. Kyaw, W. Santipach, K. Mamat, K. Kaemarungsi and K. Fukawa "Optimization of Transmit Beamforming Using Channel Covariances for MISO Downlink Assisted by Reconfigurable Intelligent Surfaces", in 2024 21st International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON).
Parameter | Current Value |
---|---|
Number of UEs | Default: 8 Otherwise: 6, or 10 |
Number of BS transmit antenna ( |
Default: 16 Otherwise: 10 |
Number of RIS elements ( |
Default: 30 Otherwise: 60 |
Downlink bandwidth | Assume mmWave Frequencies > 30 GHz |
Channel bandwidth | Rayleigh Fading Model |
Antenna configuration | MISO |
Frequency reuse scheme | Large Frequency Reuse Factor |
Mobility model | Stationary |
Learning type | Unsupervised |
Layer Name | Output Dimension | Activation Function |
---|---|---|
Input layer 1 | [M+K, 2, |
- |
Input layer 2 | [1] | - |
Input layer 3 | [M+K, 2, |
- |
Concatenate layer | [2 |
- |
Dense layer 1 | [256, 1] | softplus |
Dense layer 2 | [128, 1] | softplus |
Dense layer 3 | [64, 1] | softplus |
Lambda layer 1 | [32, 1] | - |
Lambda layer 2 | [32, 1] | - |
Dense layer 4 | [M+K, 1] | softplus |
Dense layer 5 | [M+K, 1] | softplus |
Lambda layer 3 | [M+K, 1] | - |
Lambda layer 4 | [M+K, 1] | - |
Lambda layer 5 | [M+K, |
- |
Lambda layer 6 | [1] | - |
Hyperparameters | Value |
---|---|
Number of episodes | Maximum episodes = |
Mini-batch size |
|
Network weight initializations | Keras' default wegihts |
Optimizer | Adam |
Learning rate | Maximium value = Minimum value = |
Figures of the sum rates and computaion time in the paper are found in the folder sumRates and elapsedTime respectively or as belows. The hyperparameters follow all figures presented in the paper.
Please modify N
, Nt
, totalUsers
, Lm
, Lk
in NNUtils.py and respective python
plot
files to reproduce all figures in the paper.
0.Requirements
python==3.10.10
matplotlib==3.7.1s
numpy==1.24.3
tensorflow==2.15.0
keras==2.15.0
1.Implementation
-
Generate the dataset:
python covariance.py
-
Calculate the sum rate of ZF beams w/ water-filling pwr:
python water_filling.py
-
Train the model:
python train_unsuper.py
-
Test the model:
python test_unsuper.py
-
Check the elapsed time:
python timer_calculation.py
-
Plotting the graph:
python plot_corresponding_number_.py
Eplased time info, Loss curves and sum rate plots can also be viewed in timer
, train
and Plotting
folders which will be automatically created after running the abovementioned files.