OVITO Python modifier to generate bulk crystal structures with target Warren-Cowley parameters.
Here's an example on how to use the code to create the fcc_wc.dump
file which has Warren-Cowley parameters that falls within a 1% difference of the targeted ones:
from ovito.io import export_file, import_file
from AtomisticReverseMonteCarlo import AtomisticReverseMonteCarlo
mod = AtomisticReverseMonteCarlo(
nneigh=12, # number of neighbors to compute WC parameters (12 1NN in fcc)
T=1e-9, # rMC temperature
target_wc=[ # wc target 1-pij/cj
[0.32719603, -0.19925471, -0.12794131],
[-0.19925471, 0.06350427, 0.13575045],
[-0.12794131, 0.13575045, -0.00762235],
],
tol_percent_diff=[ # max percent tolerence allowed before stopping
[1, 1, 1],
[1, 1, 1],
[1, 1, 1],
],
save_rate=1000, # save rate
seed=123,
max_iter=None, # infinity number of iterations
)
# Load the intial snapshot
pipeline = import_file("fcc_random.dump")
pipeline.modifiers.append(mod)
data = pipeline.compute()
# Load data of the last trajectory
data = pipeline.compute(-1)
print(f'Target Warren-Cowley parameters: \n {data.attributes["Target Warren-Cowley parameters"]}')
print(f'Warren-Cowley parameters: \n {data.attributes["Warren-Cowley parameters"]}')
print(f'Warren-Cowley Percent error: \n {data.attributes["Warren-Cowley percent error"]}')
export_file(
data,
"fcc_wc.dump",
"lammps/dump",
columns=[
"Particle Identifier",
"Particle Type",
"Position.X",
"Position.Y",
"Position.Z",
],
)
The script can be found in the examples
directory.
For a standalone Python package or Conda environment, please use:
pip install --user AtomisticReverseMonteCarlo
For OVITO PRO built-in Python interpreter, please use:
ovitos -m pip install --user AtomisticReverseMonteCarlo
If you want to install the lastest git commit, please replace AtomisticReverseMonteCarlo
with git+https://github.com/killiansheriff/AtomisticReverseMonteCarlo
.
If any questions, feel free to contact me (ksheriff at mit dot edu).
If you use this repository in your work, please cite:
@article{sheriffquantifying2024,
title = {Quantifying chemical short-range order in metallic alloys},
doi = {10.1073/pnas.2322962121},
journaltitle = {Proceedings of the National Academy of Sciences},
author = {Sheriff, Killian and Cao, Yifan and Smidt, Tess and Freitas, Rodrigo},
date = {2024-06-18},
}