Skip to content

Commit

Permalink
-
Browse files Browse the repository at this point in the history
  • Loading branch information
kinoxyz1 committed Sep 26, 2024
1 parent af2e286 commit f58c680
Showing 1 changed file with 32 additions and 68 deletions.
100 changes: 32 additions & 68 deletions note/MySQL/MYSQL事务日志.md
Original file line number Diff line number Diff line change
Expand Up @@ -22,19 +22,15 @@

# 1. redo日志

InnoDB存储引擎是以页为单位来管理存储空间的。在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访问。所有的变更都必须先更新缓冲池中的数据,然后缓冲池中的脏页会以一定的频率被刷入磁盘(( checkPoint机制,通过缓冲池来优化CPU和磁盘之间的鸿沟,这样就可以保证整体的性能不会下降太快。
InnoDB存储引擎是以页为单位来管理存储空间的。在真正访问页面之前,需要把在磁盘上的页缓存到内存中的Buffer Pool之后才可以访问。所有的变更都必须先更新缓冲池中的数据,然后缓冲池中的脏页会以一定的频率被刷入磁盘(checkPoint机制),通过缓冲池来优化CPU和磁盘之间的鸿沟,这样就可以保证整体的性能不会下降太快。

## 1.1 为什么需要REDO日志

一方面,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟,checkpoint机制可以保证数据的最终落盘,然
而由于checkpoint 并不是每次变更的时候就触发 的,而是master线程隔一段时间去处理的。所以最坏的情
况就是事务提交后,刚写完缓冲池,数据库宕机了,那么这段数据就是丢失的,无法恢复。
一方面,缓冲池可以帮助我们消除CPU和磁盘之间的鸿沟,checkpoint机制可以保证数据的最终落盘,然而由于checkpoint 并不是每次变更的时候就触发 的,而是master线程隔一段时间去处理的。所以最坏的情况就是事务提交后,刚写完缓冲池,数据库宕机了,那么这段数据就是丢失的,无法恢复。

另一方面,事务包含 持久性 的特性,就是说对于一个已经提交的事务,在事务提交后即使系统发生了崩
溃,这个事务对数据库中所做的更改也不能丢失。
另一方面,事务包含 持久性 的特性,就是说对于一个已经提交的事务,在事务提交后即使系统发生了崩溃,这个事务对数据库中所做的更改也不能丢失。

那么如何保证这个持久性呢? 一个简单的做法 :在事务提交完成之前把该事务所修改的所有页面都刷新
到磁盘,但是这个简单粗暴的做法有些问题
那么如何保证这个持久性呢? 一个简单的做法 :在事务提交完成之前把该事务所修改的所有页面都刷新到磁盘,但是这个简单粗暴的做法有些问题

- 修改量与刷新磁盘工作量严重不成比例

Expand All @@ -44,14 +40,9 @@ InnoDB存储引擎是以页为单位来管理存储空间的。在真正访问

一个事务可能包含很多语句,即使是一条语句也可能修改许多页面,假如该事务修改的这些页面可能并不相邻,这就意味着在将某个事务修改的Buffer Pool中的页面刷新到磁盘时,需要进行很多的随机IO,随机IO比顺序IO要慢,尤其对于传统的机械硬盘来说。

另一个解决的思路 :我们只是想让已经提交了的事务对数据库中数据所做的修改永久生效,即使后来系
统崩溃,在重启后也能把这种修改恢复出来。所以我们其实没有必要在每次事务提交时就把该事务在内
存中修改过的全部页面刷新到磁盘,只需要把 修改 了哪些东西 记录一下 就好。比如,某个事务将系统
表空间中 第10号 页面中偏移量为 100 处的那个字节的值 1 改成 2 。我们只需要记录一下:将第0号表
空间的10号页面的偏移量为100处的值更新为 2 。
另一个解决的思路 :我们只是想让已经提交了的事务对数据库中数据所做的修改永久生效,即使后来系统崩溃,在重启后也能把这种修改恢复出来。所以我们其实没有必要在每次事务提交时就把该事务在内存中修改过的全部页面刷新到磁盘,只需要把 修改 了哪些东西 记录一下 就好。比如,某个事务将系统表空间中 第10号 页面中偏移量为 100 处的那个字节的值 1 改成 2 。我们只需要记录一下:将第0号表空间的10号页面的偏移量为100处的值更新为 2 。

InnoDB引擎的事务采用了WAL技术(write-Ahead Logging ),这种技术的思想就是先写日志,再写磁盘
只有日志写入成功,才算事务提交成功,这里的日志就是redo log。当发生宕机且数据未刷到磁盘的时候,可以通过redo log来恢复,保证ACID中的D,这就是redo log的作用。
InnoDB引擎的事务采用了WAL技术(write-Ahead Logging ),这种技术的思想就是先写日志,再写磁盘只有日志写入成功,才算事务提交成功,这里的日志就是redo log。当发生宕机且数据未刷到磁盘的时候,可以通过redo log来恢复,保证ACID中的D,这就是redo log的作用。



Expand Down Expand Up @@ -130,18 +121,13 @@ redo log的写入并不是直接写入磁盘的,InnoDB引擎会在写redo log

![redolog刷盘策略](../../img/mysql/mysql事务日志/4.redolog刷盘策略.png)

注意,redo log buffer刷盘到redo log file的过程并不是真正的刷到磁盘中去,只是刷入到 文件系统缓存 (page cache)中去(这是现代操作系统为了提高文件写入效率做的一个优化),真正的写入会交给系
统自己来决定(比如page cache足够大了)。那么对于InnoDB来说就存在一个问题,如果交给系统来同
步,同样如果系统宕机,那么数据也丢失了(虽然整个系统宕机的概率还是比较小的)。
注意,redo log buffer刷盘到redo log file的过程并不是真正的刷到磁盘中去,只是刷入到 文件系统缓存 (page cache)中去(这是现代操作系统为了提高文件写入效率做的一个优化),真正的写入会交给系统自己来决定(比如page cache足够大了)。那么对于InnoDB来说就存在一个问题,如果交给系统来同步,同样如果系统宕机,那么数据也丢失了(虽然整个系统宕机的概率还是比较小的)。

针对这种情况,InnoDB给出 innodb_flush_log_at_trx_commit 参数,该参数控制 commit提交事务
时,如何将 redo log buffer 中的日志刷新到 redo log file 中。它支持三种策略:
针对这种情况,InnoDB给出 innodb_flush_log_at_trx_commit 参数,该参数控制 commit提交事务时,如何将 redo log buffer 中的日志刷新到 redo log file 中。它支持三种策略:

- 设置为0 :表示每次事务提交时不进行刷盘操作。(系统默认master thread每隔1s进行一次重做日
志的同步)
- 设置为0 :表示每次事务提交时不进行刷盘操作。(系统默认master thread每隔1s进行一次重做日志的同步)
- 设置为1 :表示每次事务提交时都将进行同步,刷盘操作( 默认值 )
- 设置为2 :表示每次事务提交时都只把 redo log buffer 内容写入 page cache,不进行同步。由os自
己决定什么时候同步到磁盘文件。
- 设置为2 :表示每次事务提交时都只把 redo log buffer 内容写入 page cache,不进行同步。由os自己决定什么时候同步到磁盘文件。

```sql
mysql> show variables like 'innodb_flush_log_at_trx_commit';
Expand Down Expand Up @@ -251,8 +237,7 @@ mysql> call p_load(30000);

MySQL把对底层页面中的一次原子访问的过程称之为一个Mini-Transaction,简称mtr,比如,向某个索引对应的B+树中插入一条记录的过程就是一个Mini-Transaction。一个所谓的mtr可以包含一组redo日志,在进行崩溃恢复时这一组redo日志作为一个不可分割的整体。

一个事务可以包含若干条语句,每一条语句其实是由若干个 mtr 组成,每一个 mtr 又可以包含若干条
redo日志,画个图表示它们的关系就是这样:
一个事务可以包含若干条语句,每一条语句其实是由若干个 mtr 组成,每一个 mtr 又可以包含若干条redo日志,画个图表示它们的关系就是这样:

![事务图](../../img/mysql/mysql事务日志/10.事务图.png)

Expand Down Expand Up @@ -308,8 +293,7 @@ redo日志,画个图表示它们的关系就是这样:

### 1. 相关参数设置

- innodb_log_group_home_dir :指定 redo log 文件组所在的路径,默认值为 ./ ,表示在数据库
的数据目录下。MySQL的默认数据目录( var/lib/mysql )下默认有两个名为 ib_logfile0 和 ib_logfile1 的文件,log buffer中的日志默认情况下就是刷新到这两个磁盘文件中。此redo日志文件位置还可以修改。
- innodb_log_group_home_dir :指定 redo log 文件组所在的路径,默认值为 ./ ,表示在数据库的数据目录下。MySQL的默认数据目录( var/lib/mysql )下默认有两个名为 ib_logfile0 和 ib_logfile1 的文件,log buffer中的日志默认情况下就是刷新到这两个磁盘文件中。此redo日志文件位置还可以修改。
- innodb_log_files_in_group:指明redo log file的个数,命名方式如:ib_logfile0,iblogfile1… iblogfilen。默认2个,最大100个。

```
Expand All @@ -324,9 +308,7 @@ mysql
```

- innodb_flush_log_at_trx_commit:控制 redo log 刷新到磁盘的策略,默认为1。
- innodb_log_file_size:单个 redo log 文件设置大小,默认值为 48M 。最大值为512G,注意最大值
指的是整个 redo log 系列文件之和,即(innodb_log_files_in_group * innodb_log_file_size )不能大
于最大值512G。
- innodb_log_file_size:单个 redo log 文件设置大小,默认值为 48M 。最大值为512G,注意最大值指的是整个 redo log 系列文件之和,即(innodb_log_files_in_group * innodb_log_file_size )不能大于最大值512G。

```
mysql> show variables like 'innodb_log_file_size';
Expand Down Expand Up @@ -360,8 +342,7 @@ bash

总共的redo日志文件大小其实就是: innodb_log_file_size × innodb_log_files_in_group 。

采用循环使用的方式向redo日志文件组里写数据的话,会导致后写入的redo日志覆盖掉前边写的redo日
志?当然!所以InnoDB的设计者提出了checkpoint的概念。
采用循环使用的方式向redo日志文件组里写数据的话,会导致后写入的redo日志覆盖掉前边写的redo日志?当然!所以InnoDB的设计者提出了checkpoint的概念。

### 3. checkpoint

Expand All @@ -388,20 +369,16 @@ InnoDB的更新操作采用的是Write Ahead Log(预先日志持久化)策略,

# 2. Undo日志

redo log是事务持久性的保证,undo log是事务原子性的保证。在事务中 更新数据 的 前置操作 其实是要
先写入一个 undo log 。
redo log是事务持久性的保证,undo log是事务原子性的保证。在事务中 更新数据 的 前置操作 其实是要先写入一个 undo log 。

## 2.1 如何理解Undo日志

事务需要保证 原子性 ,也就是事务中的操作要么全部完成,要么什么也不做。但有时候事务执行到一半
会出现一些情况,比如:
事务需要保证 原子性 ,也就是事务中的操作要么全部完成,要么什么也不做。但有时候事务执行到一半会出现一些情况,比如:

- 情况一:事务执行过程中可能遇到各种错误,比如 服务器本身的错误 , 操作系统错误 ,甚至是突
然 断电 导致的错误。
- 情况一:事务执行过程中可能遇到各种错误,比如 服务器本身的错误 , 操作系统错误 ,甚至是突然断电导致的错误。
- 情况二:程序员可以在事务执行过程中手动输入 ROLLBACK 语句结束当前事务的执行。

以上情况出现,我们需要把数据改回原先的样子,这个过程称之为 回滚 ,这样就可以造成一个假象:这
个事务看起来什么都没做,所以符合 原子性 要求。
以上情况出现,我们需要把数据改回原先的样子,这个过程称之为 回滚 ,这样就可以造成一个假象:这个事务看起来什么都没做,所以符合 原子性 要求。

每当我们要对一条记录做改动时(这里的改动可以指INSERT、DELETE、UPDATE),都需要"留一手"- - -把回滚时所需的东西记下来。比如:

Expand All @@ -423,20 +400,16 @@ MySQL把这些为了回滚而记录的这些内容称之为撤销日志或者回

- 作用2:MVCC

undo的另一个作用是MVCC,即在InnoDB存储引擎中MVCC的实现是通过undo来完成。当用户读取一行记录时
若该记录已经被其他事务占用,当前事务可以通过undo读取之前的行版本信息,以此实现非锁定读取。
undo的另一个作用是MVCC,即在InnoDB存储引擎中MVCC的实现是通过undo来完成。当用户读取一行记录时若该记录已经被其他事务占用,当前事务可以通过undo读取之前的行版本信息,以此实现非锁定读取。

## 2.3 undo的存储结构

### 1. 回滚段与undo页

InnoDB对undo log的管理采用段的方式,也就是 回滚段(rollback segment) 。每个回滚段记录了
1024 个 undo log segment ,而在每个undo log segment段中进行 undo页 的申请。
InnoDB对undo log的管理采用段的方式,也就是 回滚段(rollback segment) 。每个回滚段记录了1024 个 undo log segment ,而在每个undo log segment段中进行 undo页 的申请。

- 在 InnoDB1.1版本之前 (不包括1.1版本),只有一个rollback segment,因此支持同时在线的事务
限制为 1024 。虽然对绝大多数的应用来说都已经够用。
- 从1.1版本开始InnoDB支持最大 128个rollback segment ,故其支持同时在线的事务限制提高到
了 128*1024 。
- 在 InnoDB1.1版本之前 (不包括1.1版本),只有一个rollback segment,因此支持同时在线的事务限制为 1024 。虽然对绝大多数的应用来说都已经够用。
- 从1.1版本开始InnoDB支持最大 128个rollback segment ,故其支持同时在线的事务限制提高到了 128*1024 。

```
mysql> show variables like 'innodb_undo_logs';
Expand Down Expand Up @@ -465,13 +438,9 @@ undo log相关参数一般很少改动。
### 2. 回滚段与事务

1. 每个事务只会使用一个回滚段,一个回滚段在同一时刻可能会服务于多个事务。
2. 当一个事务开始的时候,会制定一个回滚段,在事务进行的过程中,当数据被修改时,原始的数
据会被复制到回滚段。
3. 在回滚段中,事务会不断填充盘区,直到事务结束或所有的空间被用完。如果当前的盘区不够
用,事务会在段中请求扩展下一个盘区,如果所有已分配的盘区都被用完,事务会覆盖最初的盘
区或者在回滚段允许的情况下扩展新的盘区来使用。
4. 回滚段存在于undo表空间中,在数据库中可以存在多个undo表空间,但同一时刻只能使用一个
undo表空间。
2. 当一个事务开始的时候,会制定一个回滚段,在事务进行的过程中,当数据被修改时,原始的数据会被复制到回滚段。
3. 在回滚段中,事务会不断填充盘区,直到事务结束或所有的空间被用完。如果当前的盘区不够用,事务会在段中请求扩展下一个盘区,如果所有已分配的盘区都被用完,事务会覆盖最初的盘区或者在回滚段允许的情况下扩展新的盘区来使用。
4. 回滚段存在于undo表空间中,在数据库中可以存在多个undo表空间,但同一时刻只能使用一个undo表空间。

```sql
mysql> show variables like 'innodb_undo_tablespaces';
Expand All @@ -486,12 +455,9 @@ mysql> show variables like 'innodb_undo_tablespaces';

### 3. 回滚段中的数据分类

1. 未提交的回滚数据(uncommitted undo information):该数据所关联的事务并未提交,用于实现读
一致性,所以该数据不能被其他事务的数据覆盖。
2. 已经提交但未过期的回滚数据(committed undo information):该数据关联的事务已经提交,但是仍受到
undo retention参数的保持时间的影响。
3. 事务已经提交并过期的数据(expired undo information):事务已经提交,而且数据保存时间已经超过
undo retention参数指定的时间,属于已经过期的数据。当回滚段满了之后,会优先覆盖"事务已经提交并过期的数据"。
1. 未提交的回滚数据(uncommitted undo information):该数据所关联的事务并未提交,用于实现读一致性,所以该数据不能被其他事务的数据覆盖。
2. 已经提交但未过期的回滚数据(committed undo information):该数据关联的事务已经提交,但是仍受到undo retention参数的保持时间的影响。
3. 事务已经提交并过期的数据(expired undo information):事务已经提交,而且数据保存时间已经超过undo retention参数指定的时间,属于已经过期的数据。当回滚段满了之后,会优先覆盖"事务已经提交并过期的数据"。

事务提交后并不能马上删除undo log及undo log所在的页。这是因为可能还有其他事务需要通过undo log来得到行记录之前的版本。故事务提交时将undo log放入一个链表中,是否可以最终删除undo log及undo log所在页由purge线程来判断。

Expand All @@ -501,11 +467,11 @@ mysql> show variables like 'innodb_undo_tablespaces';

- insert undo log

insert undo log是指在insert操作中产生的undo log。因为insert操作的记录,只对事务本身可见,对其他事务不可见(这是事务隔离性的要求),故该undo log可以在事务提交后直接删除。不需要进行purge操作。
insert undo log是指在insert操作中产生的undo log。因为insert操作的记录,只对事务本身可见,对其他事务不可见(这是事务隔离性的要求),故该undo log可以在事务提交后直接删除。不需要进行purge操作。

- update undo log

update undo log记录的是对delete和update操作产生的undo log。该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。
update undo log记录的是对delete和update操作产生的undo log。该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。

## 2.5 undo log的生命周期

Expand Down Expand Up @@ -605,13 +571,11 @@ UPDATE user SET id=2 WHERE id=1;

- 针对于insert undo log

因为insert操作的记录,只对事务本身可见,对其他事务不可见。故该undo log可以在事务提交后直接删
除,不需要进行purge操作。
因为insert操作的记录,只对事务本身可见,对其他事务不可见。故该undo log可以在事务提交后直接删除,不需要进行purge操作。

- 针对于update undo log

该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等
待purge线程进行最后的删除。
该undo log可能需要提供MVCC机制,因此不能在事务提交时就进行删除。提交时放入undo log链表,等待purge线程进行最后的删除。

> 补充:
> purge线程两个主要作用是:清理undo页和清除page里面带有Delete_Bit标识的数据行。在InnoDB中,事务中的Delete操作实际上并不是真正的删除掉数据行,而是一种Delete Mark操作,在记录上标识Delete_Bit,而不删除记录。是一种"假删除";只是做了个标记,真正的删除工作需要后台purge线程去完成。
Expand Down

0 comments on commit f58c680

Please sign in to comment.