Skip to content

Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

Notifications You must be signed in to change notification settings

kligvasser/SinGAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

SinGAN

This is an unofficial implementation of SinGAN from someone who's been sitting right next to SinGAN's creator for almost five years.

Please refer the project's page for more details.

Citation

If you use this code for your research, please cite the paper:

@inproceedings{shaham2019singan,
  title={Singan: Learning a generative model from a single natural image},
  author={Shaham, Tamar Rott and Dekel, Tali and Michaeli, Tomer},
  booktitle={Proceedings of the IEEE/CVF International Conference on Computer Vision},
  pages={4570--4580},
  year={2019}
}

Code

Clone repository

Clone this repository into any place you want.

git clone https://github.com/kligvasser/SinGAN
cd ./SinGAN/generation/

Install dependencies

python -m pip install -r requirements.txt

This code tested in PyTorch 1.8.1.

Training

To train SinGAN model on your own image:

python3 main.py --root <path-to-image>

Evaluating

For evaluating, run the following command:

python3 main.py --root <path-to-image> --evaluation --model-to-load <path-to-model-pt> --amps-to-load <path-to-amp-pt> --num-steps <number-of-samples> --batch-size <number-of-images-in-batch>

About

Implementation of the paper: "SinGAN: Learning a Generative Model from a Single Natural Image"

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages