Skip to content

Commit

Permalink
change usage of original kernel;
Browse files Browse the repository at this point in the history
allow custom kernels
  • Loading branch information
Korbinian Eckstein committed Mar 15, 2024
1 parent adf437a commit d523c5d
Show file tree
Hide file tree
Showing 4 changed files with 152 additions and 9 deletions.
2 changes: 1 addition & 1 deletion Project.toml
Original file line number Diff line number Diff line change
@@ -1,7 +1,7 @@
name = "QuantitativeSusceptibilityMappingTGV"
uuid = "bd393529-335a-4aed-902f-5de61cc7ff49"
authors = ["Korbinian Eckstein korbinian90@gmail.com"]
version = "0.4.2"
version = "0.5.0"

[deps]
FFTW = "7a1cc6ca-52ef-59f5-83cd-3a7055c09341"
Expand Down
2 changes: 1 addition & 1 deletion src/QuantitativeSusceptibilityMappingTGV.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,6 +7,6 @@ include("tgv_helper.jl")
include("laplacian.jl")
include("oblique_stencil.jl")

export qsm_tgv, get_laplace_phase3, get_laplace_phase_del, get_laplace_phase_romeo
export qsm_tgv, get_laplace_phase3, get_laplace_phase_del, get_laplace_phase_romeo, stencil

end
14 changes: 7 additions & 7 deletions src/tgv.jl
Original file line number Diff line number Diff line change
Expand Up @@ -7,7 +7,7 @@ Example:
chi = qsm_tgv(randn(20,20,20), trues(20,20,20), [1,1,2]; TE=0.025, fieldstrength=3)
"""
function qsm_tgv(phase, mask, res; TE, B0_dir=[0, 0, 1], fieldstrength=3, regularization=2, alpha=get_default_alpha(regularization), step_size=3, iterations=get_default_iterations(res, step_size), erosions=3, dedimensionalize=false, correct_laplacian=true, laplacian=get_laplace_phase_del, type=Float32, gpu=nothing, nblocks=32, orig_kernel=false)
function qsm_tgv(phase, mask, res; TE, B0_dir=[0, 0, 1], fieldstrength=3, regularization=2, alpha=get_default_alpha(regularization), step_size=3, iterations=get_default_iterations(res, step_size), erosions=3, dedimensionalize=false, correct_laplacian=true, laplacian=get_laplace_phase_del, type=Float32, gpu=nothing, nblocks=32, kernel=nothing)
device, cu = select_device(gpu)
phase, res, alpha, fieldstrength, mask = adjust_types(type, phase, res, alpha, fieldstrength, mask)

Expand All @@ -28,7 +28,7 @@ function qsm_tgv(phase, mask, res; TE, B0_dir=[0, 0, 1], fieldstrength=3, regula
laplace_phi0 .-= mean(laplace_phi0[mask0]) # mean correction to avoid background artefact
end

alphainv, tau, sigma, resinv, laplace_kernel, dipole_kernel = set_parameters(alpha, res, B0_dir, cu; orig_kernel)
alphainv, tau, sigma, resinv, laplace_kernel, dipole_kernel = set_parameters(alpha, res, B0_dir, cu; kernel)

laplace_phi0, mask, mask0 = cu(laplace_phi0), cu(mask), cu(mask0) # send to device

Expand Down Expand Up @@ -142,17 +142,17 @@ function dipole_kernel_orig(res)
return dipole_kernel
end

function set_parameters(alpha, res, B0_dir, cu; orig_kernel=false)
if orig_kernel isa AbstractArray
dipole_kernel = orig_kernel
function set_parameters(alpha, res, B0_dir, cu; kernel=nothing)
if kernel isa AbstractArray
dipole_kernel = kernel

grad_norm_sqr = 4 * sum(res .^ -2)
grad_norm = sqrt(grad_norm_sqr)
wave_norm = sum(abs.(dipole_kernel))
norm_matrix = [0 grad_norm 1; 0 0 grad_norm; grad_norm_sqr wave_norm 0]
F = svd(norm_matrix)
norm_sqr = first(F.S)^2
elseif orig_kernel
elseif kernel == :original
dipole_kernel = dipole_kernel_orig(res)
grad_norm_sqr = 4 * sum(res .^ -2)
norm_sqr = 2 * grad_norm_sqr^2 + 1
Expand Down
143 changes: 143 additions & 0 deletions test.jl
Original file line number Diff line number Diff line change
@@ -0,0 +1,143 @@
using DICOM, QuantitativeSusceptibilityMappingTGV, CUDA, MriResearchTools, NPZ


fn_phase = "/home/korbi/data/MRI/data/josef_streaking/P141_3depi.dicom.non-interpolated/EnhancedMRImage_EPI3D_sag_0.67mm_iso_Pha_00001.dcm"
fn_mag = "/home/korbi/data/MRI/data/josef_streaking/P141_3depi.dicom.non-interpolated/EnhancedMRImage_EPI3D_sag_0.67mm_iso_Mag_00003.dcm"
fn_mask = "/home/korbi/data/MRI/data/josef_streaking/P141_3depi.dicom.non-interpolated/wip_QSM_20240222T074855_Mask.npy"

phase = dcm_parse(fn_phase)[tag"PixelData"] .* 2π ./ 4096 .- π
mag = dcm_parse(fn_mag)[tag"PixelData"]
mask = npzread(fn_mask) .!= 0

savenii(mask, "mask", ".")

voxel_size = [0.67, 0.67, 0.67] # in [mm]
TE = 0.035
B0 = 2.8949
B0_dir = [1, 0, 0]

chi = qsm_tgv(phase, mask, voxel_size; TE=TE, fieldstrength=B0, B0_dir=B0_dir, gpu=CUDA)
savenii(chi, "chi", ".")





##


phase = dcm_parse("/home/korbi/data/MRI/Siemens_QSM/data/EnhancedMRImage_3depi_0.65iso_te27_ef17_00001.dcm")[tag"PixelData"] .* 2π ./ 4096 .- π
mag = dcm_parse("/home/korbi/data/MRI/Siemens_QSM/data/EnhancedMRImage_3depi_0.65iso_te27_ef17_00002.dcm")[tag"PixelData"]
mask = dcm_parse("/home/korbi/data/MRI/Siemens_QSM/data/EnhancedMRImage_3depi_0.65iso_te27_ef17_Qsm_00002.dcm")[tag"PixelData"] .!= 0x0800

minp, maxp = extrema(phase)

savenii(mask, "mask", ".")

voxel_size = [0.325521, 0.325521, 0.65] # in [mm]
TE = 0.027 # in [s]
fieldstrength = 2.89497 # in [T]
B0_dir = [0, 0, 1]

chi_orig = qsm_tgv(phase, mask, voxel_size; iterations=1000:1000:8000, TE=TE, fieldstrength=fieldstrength, gpu=CUDA, B0_dir=B0_dir, orig_kernel=true);

for (i, chi) in enumerate(chi_orig)
savenii(chi, "chi_orig_$(i*1000)", ".")
end

# chi_orig = qsm_tgv(phase, mask, voxel_size; iterations=500, TE=TE, fieldstrength=fieldstrength, gpu=CUDA, B0_dir=B0_dir);
# savenii(chi_orig, "chi_orig_500", ".")

## First time install NPZ for reading npy files
# import Pkg
# Pkg.add("NPZ")


using QuantitativeSusceptibilityMappingTGV, MriResearchTools, NPZ, CUDA

mask = npzread("/home/korbi/data/MRI/data/josef_ice_run/wip_iSWI_20220913T080705_Mask_2.npy") .!= 0; # convert to boolean
phase = npzread("/home/korbi/data/MRI/data/josef_ice_run/wip_iSWI_20220913T080705_Pha_2.npy")

voxel_size = [1.0, 1.0, 1.0] # in [mm]
TE = 0.021 # in [s]
fieldstrength = 3 # in [T]
B0_dir = [0, 0, 1]

chi = qsm_tgv(phase, mask, voxel_size; TE=TE, fieldstrength=fieldstrength, gpu=CUDA, B0_dir=B0_dir);
chi_orig = qsm_tgv(phase, mask, voxel_size; TE=TE, fieldstrength=fieldstrength, gpu=CUDA, B0_dir=B0_dir, orig_kernel=true);

savenii(chi, "chi", ".")
savenii(chi_orig, "chi_orig", ".")
savenii((chi .- chi_orig) ./ chi_orig, "chi_relative", ".") # relative difference

# Change regularization strength (1-4)
# chi = qsm_tgv(phase, mask, res; TE, fieldstrength, regularization=1);

##

using MriResearchTools, QuantitativeSusceptibilityMappingTGV, CUDA

phase = readphase("/home/korbi/data/MRI/data/ashley_qsm_test/bids-3depi/sub-1/ses-064mm-epi/anat/sub-1_ses-064mm-epi_run-1_part-phase_T2starw.nii")
mask = niread("/home/korbi/data/MRI/data/ashley_qsm_test/result/mask.nii") .!= 0

voxel_size = [1.0, 1.0, 1.0] # in [mm]
TE = 0.021 # in [s]
fieldstrength = 3 # in [T]
B0_dir = [0, 0, 1]

chi_orig = qsm_tgv(phase, mask, voxel_size; TE, fieldstrength, orig_kernel=true, gpu=CUDA);
chi_st = qsm_tgv(phase, mask, voxel_size; TE, fieldstrength, orig_kernel=:test, gpu=CUDA);


savenii(chi_orig, "chi_orig", ".")
savenii(chi_st, "chi_st", ".")


savenii((chi_st .- chi_orig) ./ abs.(chi_orig), "chi_st_relative", ".") # relative differenceswapdims(phase, 1, 3)
savenii(chi_st .- chi_orig, "chi_diff", ".")

## Rotation

# Rotate 90 degrees around y-axis
phase_x = permutedims(phase, [3, 2, 1])
mask_x = permutedims(mask, [3, 2, 1])
chi_x = qsm_tgv(phase_x, mask_x, voxel_size; TE, fieldstrength, orig_kernel=dipole_kernel_orig_x(voxel_size), gpu=CUDA);
savenii(chi_x, "chi_x", ".")

##

function dipole_kernel_orig_z(res)
dipole_kernel = zeros(Float32, 3, 3, 3)
dipole_kernel[3, 2, 2] = 1/3 / res[1]^2
dipole_kernel[2, 3, 2] = 1/3 / res[2]^2
dipole_kernel[2, 2, 3] = -2/3 / res[3]^2
dipole_kernel[2, 2, 1] = -2/3 / res[3]^2
dipole_kernel[2, 1, 2] = 1/3 / res[2]^2
dipole_kernel[1, 2, 2] = 1/3 / res[1]^2
dipole_kernel[2, 2, 2] = -sum(dipole_kernel)
return dipole_kernel
end

function dipole_kernel_orig_x(res)
dipole_kernel = zeros(Float32, 3, 3, 3)
dipole_kernel[3, 2, 2] = -2/3 / res[1]^2
dipole_kernel[2, 3, 2] = 1/3 / res[2]^2
dipole_kernel[2, 2, 3] = 1/3 / res[3]^2
dipole_kernel[2, 2, 1] = 1/3 / res[3]^2
dipole_kernel[2, 1, 2] = 1/3 / res[2]^2
dipole_kernel[1, 2, 2] = -2/3 / res[1]^2
dipole_kernel[2, 2, 2] = -sum(dipole_kernel)
return dipole_kernel
end

function dipole_kernel_orig_y(res)
dipole_kernel = zeros(Float32, 3, 3, 3)
dipole_kernel[3, 2, 2] = 1/3 / res[1]^2
dipole_kernel[2, 3, 2] = -2/3 / res[2]^2
dipole_kernel[2, 2, 3] = 1/3 / res[3]^2
dipole_kernel[2, 2, 1] = 1/3 / res[3]^2
dipole_kernel[2, 1, 2] = -2/3 / res[2]^2
dipole_kernel[1, 2, 2] = 1/3 / res[1]^2
dipole_kernel[2, 2, 2] = -sum(dipole_kernel)
return dipole_kernel
end

0 comments on commit d523c5d

Please sign in to comment.