git clone https://github.com/kravrolens/TSMaction.git
conda create -n action python=3.9
conda activate action
conda install pytorch torchvision pytorch-cuda=11.8 -c pytorch -c nvidia -y
pip install -r requirements.txt
bash pretrained/download.sh
首先批量下载训练集和验证集压缩包:
mkdir p ~/Data/Kinetics-400 && cd ~/Data/Kinetics-400
bash ~/Code/TSM/data/download.sh ~/Code/TSM/data/train_link.list
bash ~/Code/TSM/data/download.sh ~/Code/TSM/data/val_link.list
解压数据集,路径基本格式为:
$~/Data/Kinetics-400/train/
$~/Data/Kinetics-400/test/
$~/Data/Kinetics-400/train/abseiling/
...
$~/Data/Kinetics-400/test/abseiling/
...
把视频拆分成帧,由于磁盘容量限制,这里仅拆分验证集,路径是:~/Data/Kinetics-400/val_frame
mkdir -p ~/Data/Kinetics-400/val_frame && cd tools
python vid2img_kinetics.py ~/Data/Kinetics-400/val ~/Data/Kinetics-400/val_frame
生成标签,路径在:~/Code/TSM/data/val_videofolder.txt,生成格式是:<图像相对路径 jepg数量 类别>
python tools/gen_label_kinetics_val.py
若要生成训练集,只需将上述路径中的val替换为train即可,路径是:~/Data/Kinetics-400/train_frame
mkdir -p ~/Data/Kinetics-400/train_frame && cd tools
python vid2img_kinetics.py ~/Data/Kinetics-400/train ~/Data/Kinetics-400/train_frame
python tools/gen_label_kinetics_train.py
生成标签,路径在:~/Code/TSM/data/train_videofolder.txt
bash scripts/train_tsm_kinetics_rgb_8f.sh
bash scripts/test_tsm_kinetics_rgb_8f.sh