Skip to content

Keras, Tensorflow eager execution implementation of Categorical Variational Autoencoder

Notifications You must be signed in to change notification settings

kristpapadopoulos/categorical-variational-autoencoder

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

6 Commits
 
 
 
 
 
 

Repository files navigation

Categorical Variational Autoencoder

Keras, Tensorflow Probability and Eager Execution Implementation

Straight Through Gumbel-Softmax Estimator implemented as per paper: Categorical Reparameterization with Gumbel-Softmax (No temperature, learning rate annealing. Hard prior used)

Code developed from:

  1. Eric Jang: https://github.com/ericjang/gumbel-softmax/blob/master/gumbel_softmax_vae_v2.ipynb

  2. Google Seedbank Convolutional Variational Autoencoder https://tools.google.com/seedbank/seed/5719238044024832

File: cat_vae_v0.1.py - Sep 24, 2018

  • Tensorflow 1.10.0
  • Numpy 1.14.5
  • Epochs = 10
  • Temperature = 1
  • Learning Rate = 0.001
  • Number of categorical distributions = 30

Items for further development:

  • Anneal temperature and learning rate
  • Use relaxed prior
  • Increase the number of epochs
  • Increase the number of categorical distributions to sample from

Example of generated MNIST images from 100 test samples

cat_vae MNIST samples