Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

chore(components): Bump image version for Structured Data pipelines #11000

Merged
merged 1 commit into from
Jul 12, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions components/google-cloud/RELEASE.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,7 @@
## Upcoming release
* Updated the Starry Net pipeline's template gallery description, and added dataprep_nan_threshold and dataprep_zero_threshold args to the Starry Net pipeline.
* Add support for running tasks on a `PersistentResource` (see [CustomJobSpec](https://cloud.google.com/vertex-ai/docs/reference/rest/v1beta1/CustomJobSpec)) via `persistent_resource_id` parameter on `v1.custom_job.CustomTrainingJobOp` and `v1.custom_job.create_custom_training_job_from_component`
* Bump image for Structured Data pipelines.

## Release 2.15.0
* Add Gemini batch prediction support to `v1.model_evaluation.autosxs_pipeline`.
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -72,7 +72,7 @@ def automl_forecasting_ensemble(
# fmt: on
job_id = dsl.PIPELINE_JOB_ID_PLACEHOLDER
task_id = dsl.PIPELINE_TASK_ID_PLACEHOLDER
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625'
image_uri = 'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625'
display_name = f'automl-forecasting-ensemble-{job_id}-{task_id}'

error_file_path = f'{root_dir}/{job_id}/{task_id}/error.pb'
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -99,14 +99,14 @@ def automl_forecasting_stage_1_tuner(
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
' "container_spec": {"image_uri":"'
),
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
'", "args": ["forecasting_mp_l2l_stage_1_tuner',
'", "--region=',
location,
'", "--transform_output_path=',
transform_output.uri,
'", "--training_docker_uri=',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
'", "--reduce_search_space_mode=',
reduce_search_space_mode,
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -97,14 +97,14 @@ def automl_forecasting_stage_2_tuner(
' 1, "machine_spec": {"machine_type": "n1-standard-8"},'
' "container_spec": {"image_uri":"'
),
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
'", "args": ["forecasting_mp_l2l_stage_2_tuner',
'", "--region=',
location,
'", "--transform_output_path=',
transform_output.uri,
'", "--training_docker_uri=',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240419_0625',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/forecasting-training:20240710_0625',
f'", "--component_id={dsl.PIPELINE_TASK_ID_PLACEHOLDER}',
'", "--training_base_dir=',
root_dir,
Expand Down

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Large diffs are not rendered by default.

Original file line number Diff line number Diff line change
Expand Up @@ -13,6 +13,20 @@
])


def _validate_start_max_parameters(
starting_worker_count: int,
max_worker_count: int,
starting_count_name: str,
max_count_name: str,
):
if starting_worker_count > max_worker_count:
raise ValueError(
'Starting count must be less than or equal to max count.'
f' {starting_count_name}: {starting_worker_count}, {max_count_name}:'
f' {max_worker_count}'
)


def _get_base_forecasting_parameters(
*,
project: str,
Expand Down Expand Up @@ -59,6 +73,7 @@ def _get_base_forecasting_parameters(
evaluation_batch_predict_max_replica_count: int = 25,
evaluation_dataflow_machine_type: str = 'n1-standard-16',
evaluation_dataflow_max_num_workers: int = 25,
evaluation_dataflow_starting_num_workers: int = 22,
evaluation_dataflow_disk_size_gb: int = 50,
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
Expand Down Expand Up @@ -91,6 +106,20 @@ def _get_base_forecasting_parameters(
)
time_series_identifier_columns = [time_series_identifier_column]

_validate_start_max_parameters(
starting_worker_count=evaluation_batch_predict_starting_replica_count,
max_worker_count=evaluation_batch_predict_max_replica_count,
starting_count_name='evaluation_batch_predict_starting_replica_count',
max_count_name='evaluation_batch_predict_max_replica_count',
)

_validate_start_max_parameters(
starting_worker_count=evaluation_dataflow_starting_num_workers,
max_worker_count=evaluation_dataflow_max_num_workers,
starting_count_name='evaluation_dataflow_starting_num_workers',
max_count_name='evaluation_dataflow_max_num_workers',
)

parameter_values = {}
parameters = {
'project': project,
Expand Down Expand Up @@ -152,6 +181,9 @@ def _get_base_forecasting_parameters(
'evaluation_dataflow_max_num_workers': (
evaluation_dataflow_max_num_workers
),
'evaluation_dataflow_starting_num_workers': (
evaluation_dataflow_starting_num_workers
),
'evaluation_dataflow_disk_size_gb': evaluation_dataflow_disk_size_gb,
'study_spec_parameters_override': study_spec_parameters_override,
'stage_1_tuner_worker_pool_specs_override': (
Expand All @@ -174,13 +206,11 @@ def _get_base_forecasting_parameters(

# Filter out empty values and those excluded from the particular pipeline.
# (example: TFT and Seq2Seq don't support `quantiles`.)
parameter_values.update(
{
param: value
for param, value in parameters.items()
if value is not None and param not in fields_to_exclude
}
)
parameter_values.update({
param: value
for param, value in parameters.items()
if value is not None and param not in fields_to_exclude
})
return parameter_values


Expand Down Expand Up @@ -229,6 +259,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: int = 25,
evaluation_dataflow_machine_type: str = 'n1-standard-16',
evaluation_dataflow_max_num_workers: int = 25,
evaluation_dataflow_starting_num_workers: int = 22,
evaluation_dataflow_disk_size_gb: int = 50,
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
Expand Down Expand Up @@ -291,6 +322,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
study_spec_parameters_override: The list for overriding study spec.
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
Expand Down Expand Up @@ -354,6 +386,7 @@ def get_learn_to_learn_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
study_spec_parameters_override=study_spec_parameters_override,
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
Expand Down Expand Up @@ -423,6 +456,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: int = 25,
evaluation_dataflow_machine_type: str = 'n1-standard-16',
evaluation_dataflow_max_num_workers: int = 25,
evaluation_dataflow_starting_num_workers: int = 22,
evaluation_dataflow_disk_size_gb: int = 50,
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
Expand Down Expand Up @@ -485,6 +519,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
study_spec_parameters_override: The list for overriding study spec.
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
Expand Down Expand Up @@ -548,6 +583,7 @@ def get_time_series_dense_encoder_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
study_spec_parameters_override=study_spec_parameters_override,
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
Expand Down Expand Up @@ -616,6 +652,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: int = 25,
evaluation_dataflow_machine_type: str = 'n1-standard-16',
evaluation_dataflow_max_num_workers: int = 25,
evaluation_dataflow_starting_num_workers: int = 22,
evaluation_dataflow_disk_size_gb: int = 50,
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
Expand Down Expand Up @@ -671,6 +708,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
study_spec_parameters_override: The list for overriding study spec.
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
Expand Down Expand Up @@ -731,6 +769,7 @@ def get_temporal_fusion_transformer_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
study_spec_parameters_override=study_spec_parameters_override,
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
Expand Down Expand Up @@ -795,6 +834,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: int = 25,
evaluation_dataflow_machine_type: str = 'n1-standard-16',
evaluation_dataflow_max_num_workers: int = 25,
evaluation_dataflow_starting_num_workers: int = 22,
evaluation_dataflow_disk_size_gb: int = 50,
study_spec_parameters_override: Optional[List[Dict[str, Any]]] = None,
stage_1_tuner_worker_pool_specs_override: Optional[Dict[str, Any]] = None,
Expand Down Expand Up @@ -851,6 +891,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count: The maximum count of replicas the batch prediction job can scale to.
evaluation_dataflow_machine_type: Machine type for the dataflow job in evaluation, such as 'n1-standard-16'.
evaluation_dataflow_max_num_workers: Maximum number of dataflow workers.
evaluation_dataflow_starting_num_workers: Starting number of dataflow workers.
evaluation_dataflow_disk_size_gb: The disk space in GB for dataflow.
study_spec_parameters_override: The list for overriding study spec.
stage_1_tuner_worker_pool_specs_override: The dictionary for overriding stage 1 tuner worker pool spec.
Expand Down Expand Up @@ -908,6 +949,7 @@ def get_sequence_to_sequence_forecasting_pipeline_and_parameters(
evaluation_batch_predict_max_replica_count=evaluation_batch_predict_max_replica_count,
evaluation_dataflow_machine_type=evaluation_dataflow_machine_type,
evaluation_dataflow_max_num_workers=evaluation_dataflow_max_num_workers,
evaluation_dataflow_starting_num_workers=evaluation_dataflow_starting_num_workers,
evaluation_dataflow_disk_size_gb=evaluation_dataflow_disk_size_gb,
study_spec_parameters_override=study_spec_parameters_override,
stage_1_tuner_worker_pool_specs_override=stage_1_tuner_worker_pool_specs_override,
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -65,7 +65,7 @@ def automated_feature_engineering(
' 1, "machine_spec": {"machine_type": "n1-standard-16"},'
' "container_spec": {"image_uri":"'
),
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240419_0625',
'us-docker.pkg.dev/vertex-ai-restricted/automl-tabular/training:20240710_0625',
'", "args": ["feature_engineering", "--project=', project,
'", "--location=', location, '", "--data_source_bigquery_table_path=',
data_source_bigquery_table_path,
Expand Down
Loading
Loading