Skip to content

Commit

Permalink
✨ Support GPU nodes with "nvidia-gpu" flavor
Browse files Browse the repository at this point in the history
  • Loading branch information
mboersma committed Oct 19, 2020
1 parent 2307c8c commit bf62412
Show file tree
Hide file tree
Showing 5 changed files with 691 additions and 0 deletions.
130 changes: 130 additions & 0 deletions docs/book/src/topics/gpu.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,130 @@
# GPU-enabled clusters

## Overview

With CAPZ you can create GPU-enabled Kubernetes clusters on Microsoft Azure.

Before you begin, be aware that:

- [Scheduling GPUs](https://kubernetes.io/docs/tasks/manage-gpus/scheduling-gpus/) is a Kubernetes beta feature
- [NVIDIA GPUs](https://docs.microsoft.com/en-us/azure/virtual-machines/sizes-gpu) are supported on Azure NC-series, NV-series, and NVv3-series VMs

To deploy a cluster with support for NVIDIA GPU nodes, use the [nvidia-gpu flavor template](https://raw.githubusercontent.com/kubernetes-sigs/cluster-api-provider-azure/master/templates/cluster-template-nvidia-gpu.yaml).

After the cluster is created and the N-series nodes are running, you must deploy the [NVIDIA device plugin](https://raw.githubusercontent.com/NVIDIA/k8s-device-plugin/master/nvidia-device-plugin.yml) to enable Kubernetes to expose `nvidia.com/gpu` as a schedulable resource.

## An example GPU cluster

Let's create a CAPZ cluster with an NVIDIA node and run a GPU-powered vector calculation.

### Generate an nvidia-gpu cluster template

Use the `clusterctl config cluster` command to generate a manifest that defines your GPU-enabled
workload cluster.

Remember to use the `nvidia-gpu` flavor with N-series nodes.

```bash
AZURE_CONTROL_PLANE_MACHINE_TYPE=Standard_D2s_v3 \
AZURE_NODE_MACHINE_TYPE=Standard_NC6s_v3 \
AZURE_LOCATION=southcentralus \
clusterctl config cluster azure-gpu \
--kubernetes-version=v1.19.3 \
--worker-machine-count=1 \
--flavor=nvidia-gpu > azure-gpu-cluster.yaml
```

### Create the cluster

Apply the manifest from the previous step to your management cluster to have CAPZ create a
workload cluster:

```bash
$ kubectl apply -f azure-gpu-cluster.yaml
cluster.cluster.x-k8s.io/azure-gpu created
azurecluster.infrastructure.cluster.x-k8s.io/azure-gpu created
kubeadmcontrolplane.controlplane.cluster.x-k8s.io/azure-gpu-control-plane created
azuremachinetemplate.infrastructure.cluster.x-k8s.io/azure-gpu-control-plane created
machinedeployment.cluster.x-k8s.io/azure-gpu-md-0 created
azuremachinetemplate.infrastructure.cluster.x-k8s.io/azure-gpu-md-0 created
kubeadmconfigtemplate.bootstrap.cluster.x-k8s.io/azure-gpu-md-0 created
```

Wait until the cluster and nodes are finished provisioning. The GPU nodes make take several minutes
to provision, since each one must install drivers and supporting software.

```bash
$ kubectl get cluster azure-gpu
NAME PHASE
azure-gpu Provisioned
$ kubectl get machines
NAME PROVIDERID PHASE VERSION
azure-gpu-control-plane-t94nm azure:////subscriptions/<subscription_id>/resourceGroups/azure-gpu/providers/Microsoft.Compute/virtualMachines/azure-gpu-control-plane-nnb57 Running v1.19.2
azure-gpu-md-0-f6b88dd78-vmkph azure:////subscriptions/<subscription_id>/resourceGroups/azure-gpu/providers/Microsoft.Compute/virtualMachines/azure-gpu-md-0-gcc8v Running v1.19.2
```

You can run these commands against the workload cluster to verify that the device plugin has
initialized and the `nvidia.com/gpu` resource is available:

```bash
$ clusterctl get kubeconfig azure-gpu > azure-gpu-cluster.conf
$ export KUBECONFIG=azure-gpu-cluster.conf
$ kubectl -n kube-system get po | grep nvidia
kube-system nvidia-device-plugin-daemonset-d5dn6 1/1 Running 0 16m
$ kubectl get nodes
NAME STATUS ROLES AGE VERSION
azure-gpu-control-plane-nnb57 Ready master 42m v1.19.2
azure-gpu-md-0-gcc8v Ready <none> 38m v1.19.2
$ kubectl get node azure-gpu-md-0-gcc8v -o jsonpath={.status.allocatable} | jq
{
"attachable-volumes-azure-disk": "24",
"cpu": "6",
"ephemeral-storage": "119716326407",
"hugepages-1Gi": "0",
"hugepages-2Mi": "0",
"memory": "57482472Ki",
"nvidia.com/gpu": "1",
"pods": "110"
}
```

### Run a test app

Let's create a pod manifest for the `cuda-vector-add` example from the Kubernetes documentation and
deploy it:

```shell
$ cat > cuda-vector-add.yaml << EOF
apiVersion: v1
kind: Pod
metadata:
name: cuda-vector-add
spec:
restartPolicy: OnFailure
containers:
- name: cuda-vector-add
# https://github.com/kubernetes/kubernetes/blob/v1.7.11/test/images/nvidia-cuda/Dockerfile
image: "k8s.gcr.io/cuda-vector-add:v0.1"
resources:
limits:
nvidia.com/gpu: 1 # requesting 1 GPU
EOF
$ kubectl apply -f cuda-vector-add.yaml
```

The container will download, run, and perform a [CUDA](https://developer.nvidia.com/cuda-zone)
calculation with the GPU.

```bash
$ kubectl get po cuda-vector-add
cuda-vector-add 0/1 Completed 0 91s
$ kubectl logs cuda-vector-add
[Vector addition of 50000 elements]
Copy input data from the host memory to the CUDA device
CUDA kernel launch with 196 blocks of 256 threads
Copy output data from the CUDA device to the host memory
Test PASSED
Done
```

If you see output like the above, your GPU cluster is working!
Loading

0 comments on commit bf62412

Please sign in to comment.