Skip to content

kybelvody/darknet

 
 

Repository files navigation

Darknet

Darknet is an open source neural network framework written in C and CUDA. It is fast, easy to install, and supports CPU and GPU computation.

For more information see the Darknet project website.

CUDNN 5,6 support

This code is prepared for CUDNN 6. If you want to use CUDNN 5 - change cudnnSetConvolution2dDescriptor_v4 to cudnnSetConvolution2dDescriptor

Results - 4K video

Dataset #1

Input 4K video: Download input video

Camera: Samsung S7

Watch 8K comparison on Youtube:

8K 4x YOLO (Tiny YOLO, VOC, COCO, YOLO9000) Object Detection #1


Dataset #2

Input 4K video: Download input video

Camera: Samsung S7

Watch 8K comparison on Youtube:

8K 4x YOLO (Tiny YOLO, VOC, COCO, YOLO9000) Object Detection #2


Dataset #3

Input 4K video: Download input video

Camera: Samsung S7

Watch 8K comparison on Youtube:

8K 4x YOLO (Tiny YOLO, VOC, COCO, YOLO9000) #3


Dataset #4

Input 4K video: Download input video

Camera: Samsung S7

Watch 8K comparison on Youtube:

8K 4x YOLO (Tiny YOLO, VOC, COCO, YOLO9000) #4


Webcam Demo!

Try it yourself:

  1. Build darknet
  2. Download weights
  3. Run webcam demos:
./webcam-coco.sh
./webcam-tiny-yolo.sh
./webcam-voc.sh
./webcam-yolo9000.sh

Build darknet

Edit Makefile to enable GPU, CUDNN and OpenCV:

GPU=1
CUDNN=1
OPENCV=1
DEBUG=0

Choose your CUDA architecture, example for GTX980M: (you can check it here CUDA Compute Capability)

ARCH=       -gencode arch=compute_52,code=[sm_52,compute_52]

Run make and you are ready!

Download weights

All weights are available at Darknet project website.

cd weights
wget https://pjreddie.com/media/files/yolo-voc.weights
wget -O yolo-coco.weights https://pjreddie.com/media/files/yolo.weights
wget https://pjreddie.com/media/files/tiny-yolo-voc.weights
wget https://pjreddie.com/media/files/yolo9000.weights

Architectures

YOLO COCO

layer filters size input output
0 conv 32 3 x 3 / 1 608 x 608 x 3 608 x 608 x 32
1 max 2 x 2 / 2 608 x 608 x 32 304 x 304 x 32
2 conv 64 3 x 3 / 1 304 x 304 x 32 304 x 304 x 64
3 max 2 x 2 / 2 304 x 304 x 64 152 x 152 x 64
4 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
5 conv 64 1 x 1 / 1 152 x 152 x 128 152 x 152 x 64
6 conv 128 3 x 3 / 1 152 x 152 x 64 152 x 152 x 128
7 max 2 x 2 / 2 152 x 152 x 128 76 x 76 x 128
8 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
9 conv 128 1 x 1 / 1 76 x 76 x 256 76 x 76 x 128
10 conv 256 3 x 3 / 1 76 x 76 x 128 76 x 76 x 256
11 max 2 x 2 / 2 76 x 76 x 256 38 x 38 x 256
12 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
13 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
14 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
15 conv 256 1 x 1 / 1 38 x 38 x 512 38 x 38 x 256
16 conv 512 3 x 3 / 1 38 x 38 x 256 38 x 38 x 512
17 max 2 x 2 / 2 38 x 38 x 512 19 x 19 x 512
18 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
19 conv 512 1 x 1 / 1 19 x 19 x1024 19 x 19 x 512
20 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
21 conv 512 1 x 1 / 1 19 x 19 x1024 19 x 19 x 512
22 conv 1024 3 x 3 / 1 19 x 19 x 512 19 x 19 x1024
23 conv 1024 3 x 3 / 1 19 x 19 x1024 19 x 19 x1024
24 conv 1024 3 x 3 / 1 19 x 19 x1024 19 x 19 x1024
25 route 16
26 conv 64 1 x 1 / 1 38 x 38 x 512 38 x 38 x 64
27 reorg / 2 38 x 38 x 64 19 x 19 x 256
28 route 27 24
29 conv 1024 3 x 3 / 1 19 x 19 x1280 19 x 19 x1024
30 conv 425 1 x 1 / 1 19 x 19 x1024 19 x 19 x 425
31 detection

YOLO VOC

layer filters size input output
0 conv 32 3 x 3 / 1 416 x 416 x 3 416 x 416 x 32
1 max 2 x 2 / 2 416 x 416 x 32 208 x 208 x 32
2 conv 64 3 x 3 / 1 208 x 208 x 32 208 x 208 x 64
3 max 2 x 2 / 2 208 x 208 x 64 104 x 104 x 64
4 conv 128 3 x 3 / 1 104 x 104 x 64 104 x 104 x 128
5 conv 64 1 x 1 / 1 104 x 104 x 128 104 x 104 x 64
6 conv 128 3 x 3 / 1 104 x 104 x 64 104 x 104 x 128
7 max 2 x 2 / 2 104 x 104 x 128 52 x 52 x 128
8 conv 256 3 x 3 / 1 52 x 52 x 128 52 x 52 x 256
9 conv 128 1 x 1 / 1 52 x 52 x 256 52 x 52 x 128
10 conv 256 3 x 3 / 1 52 x 52 x 128 52 x 52 x 256
11 max 2 x 2 / 2 52 x 52 x 256 26 x 26 x 256
12 conv 512 3 x 3 / 1 26 x 26 x 256 26 x 26 x 512
13 conv 256 1 x 1 / 1 26 x 26 x 512 26 x 26 x 256
14 conv 512 3 x 3 / 1 26 x 26 x 256 26 x 26 x 512
15 conv 256 1 x 1 / 1 26 x 26 x 512 26 x 26 x 256
16 conv 512 3 x 3 / 1 26 x 26 x 256 26 x 26 x 512
17 max 2 x 2 / 2 26 x 26 x 512 13 x 13 x 512
18 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
19 conv 512 1 x 1 / 1 13 x 13 x1024 13 x 13 x 512
20 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
21 conv 512 1 x 1 / 1 13 x 13 x1024 13 x 13 x 512
22 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
23 conv 1024 3 x 3 / 1 13 x 13 x1024 13 x 13 x1024
24 conv 1024 3 x 3 / 1 13 x 13 x1024 13 x 13 x1024
25 route 16
26 conv 64 1 x 1 / 1 26 x 26 x 512 26 x 26 x 64
27 reorg / 2 26 x 26 x 64 13 x 13 x 256
28 route 27 24
29 conv 1024 3 x 3 / 1 13 x 13 x1280 13 x 13 x1024
30 conv 125 1 x 1 / 1 13 x 13 x1024 13 x 13 x 125
31 detection

Tiny YOLO VOC

layer filters size input output
0 conv 16 3 x 3 / 1 416 x 416 x 3 416 x 416 x 16
1 max 2 x 2 / 2 416 x 416 x 16 208 x 208 x 16
2 conv 32 3 x 3 / 1 208 x 208 x 16 208 x 208 x 32
3 max 2 x 2 / 2 208 x 208 x 32 104 x 104 x 32
4 conv 64 3 x 3 / 1 104 x 104 x 32 104 x 104 x 64
5 max 2 x 2 / 2 104 x 104 x 64 52 x 52 x 64
6 conv 128 3 x 3 / 1 52 x 52 x 64 52 x 52 x 128
7 max 2 x 2 / 2 52 x 52 x 128 26 x 26 x 128
8 conv 256 3 x 3 / 1 26 x 26 x 128 26 x 26 x 256
9 max 2 x 2 / 2 26 x 26 x 256 13 x 13 x 256
10 conv 512 3 x 3 / 1 13 x 13 x 256 13 x 13 x 512
11 max 2 x 2 / 1 13 x 13 x 512 13 x 13 x 512
12 conv 1024 3 x 3 / 1 13 x 13 x 512 13 x 13 x1024
13 conv 1024 3 x 3 / 1 13 x 13 x1024 13 x 13 x1024
14 conv 125 1 x 1 / 1 13 x 13 x1024 13 x 13 x 125
15 detection

YOLO 9000

layer filters size input output
0 conv 32 3 x 3 / 1 544 x 544 x 3 544 x 544 x 32
1 max 2 x 2 / 2 544 x 544 x 32 272 x 272 x 32
2 conv 64 3 x 3 / 1 272 x 272 x 32 272 x 272 x 64
3 max 2 x 2 / 2 272 x 272 x 64 136 x 136 x 64
4 conv 128 3 x 3 / 1 136 x 136 x 64 136 x 136 x 128
5 conv 64 1 x 1 / 1 136 x 136 x 128 136 x 136 x 64
6 conv 128 3 x 3 / 1 136 x 136 x 64 136 x 136 x 128
7 max 2 x 2 / 2 136 x 136 x 128 68 x 68 x 128
8 conv 256 3 x 3 / 1 68 x 68 x 128 68 x 68 x 256
9 conv 128 1 x 1 / 1 68 x 68 x 256 68 x 68 x 128
10 conv 256 3 x 3 / 1 68 x 68 x 128 68 x 68 x 256
11 max 2 x 2 / 2 68 x 68 x 256 34 x 34 x 256
12 conv 512 3 x 3 / 1 34 x 34 x 256 34 x 34 x 512
13 conv 256 1 x 1 / 1 34 x 34 x 512 34 x 34 x 256
14 conv 512 3 x 3 / 1 34 x 34 x 256 34 x 34 x 512
15 conv 256 1 x 1 / 1 34 x 34 x 512 34 x 34 x 256
16 conv 512 3 x 3 / 1 34 x 34 x 256 34 x 34 x 512
17 max 2 x 2 / 2 34 x 34 x 512 17 x 17 x 512
18 conv 1024 3 x 3 / 1 17 x 17 x 512 17 x 17 x1024
19 conv 512 1 x 1 / 1 17 x 17 x1024 17 x 17 x 512
20 conv 1024 3 x 3 / 1 17 x 17 x 512 17 x 17 x1024
21 conv 512 1 x 1 / 1 17 x 17 x1024 17 x 17 x 512
22 conv 1024 3 x 3 / 1 17 x 17 x 512 17 x 17 x1024
23 conv 28269 1 x 1 / 1 17 x 17 x1024 17 x 17 x28269
24 detection

About

Convolutional Neural Networks

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • C 91.4%
  • Cuda 7.5%
  • Python 0.3%
  • C++ 0.3%
  • Makefile 0.3%
  • Shell 0.2%