Skip to content

lamhda/scikit-dimension

 
 

Repository files navigation

Build Status Build status codecov CircleCI Documentation Status Language grade: Python GitHub license

scikit-dimension

scikit-dimension is a (work-in-progress /!\) Python module for intrinsic dimension estimation built according to the scikit-learn API and distributed under the 3-Clause BSD license.

Installation

Using pip:

pip install git+https://github.com/j-bac/scikit-dimension.git

From source:

git clone https://github.com/j-bac/scikit-dimension
cd scikit-dimension
pip install .

Quick start

Local and global estimators can be used in this way:

import skdim
import numpy as np

#generate data : np.array (n_points x n_dim). Here a uniformly sampled 5-ball embedded in 10 dimensions
data = np.zeros((1000,10))
data[:,:5] = skdim.datasets.hyperBall(n = 1000, d = 5, radius = 1, random_state = 0)

#fit an estimator of global intrinsic dimension (gid)
danco = skdim.id.DANCo().fit(data)
#fit a global or local estimator in k-nearest-neighborhoods of each point:
lpca_pw = skdim.id.lPCA().fit_pw(data,
                                    n_neighbors = 100,
                                    n_jobs = 1)
                            
#get estimated intrinsic dimension
print(danco.dimension_, fishers.dimension_, np.mean(lpca_pw))

Please refer to the documentation for detailed API and examples.

Credits and links to original implementations:

R

MATLAB

C++ TwoNN

Python TwoNN

About

A Python package for intrinsic dimension estimation

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%