Skip to content

Commit

Permalink
community: Fix FastEmbedEmbeddings (#24462)
Browse files Browse the repository at this point in the history
## Description

This PR:
- Fixes the validation error in `FastEmbedEmbeddings`.
- Adds support for `batch_size`, `parallel` params.
- Removes support for very old FastEmbed versions.
- Updates the FastEmbed doc with the new params.

Associated Issues:
- Resolves #24039
- Resolves #qdrant/fastembed#296
  • Loading branch information
Anush008 authored Jul 30, 2024
1 parent 73ec24f commit 51b1544
Show file tree
Hide file tree
Showing 4 changed files with 71 additions and 37 deletions.
17 changes: 13 additions & 4 deletions docs/docs/integrations/text_embedding/fastembed.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -73,16 +73,25 @@
"- `max_length: int` (default: 512)\n",
" > The maximum number of tokens. Unknown behavior for values > 512.\n",
"\n",
"- `cache_dir: Optional[str]`\n",
"- `cache_dir: Optional[str]` (default: None)\n",
" > The path to the cache directory. Defaults to `local_cache` in the parent directory.\n",
"\n",
"- `threads: Optional[int]`\n",
" > The number of threads a single onnxruntime session can use. Defaults to None.\n",
"- `threads: Optional[int]` (default: None)\n",
" > The number of threads a single onnxruntime session can use.\n",
"\n",
"- `doc_embed_type: Literal[\"default\", \"passage\"]` (default: \"default\")\n",
" > \"default\": Uses FastEmbed's default embedding method.\n",
" \n",
" > \"passage\": Prefixes the text with \"passage\" before embedding."
" > \"passage\": Prefixes the text with \"passage\" before embedding.\n",
"\n",
"- `batch_size: int` (default: 256)\n",
" > Batch size for encoding. Higher values will use more memory, but be faster.\n",
"\n",
"- `parallel: Optional[int]` (default: None)\n",
"\n",
" > If `>1`, data-parallel encoding will be used, recommended for offline encoding of large datasets.\n",
" > If `0`, use all available cores.\n",
" > If `None`, don't use data-parallel processing, use default onnxruntime threading instead."
]
},
{
Expand Down
4 changes: 2 additions & 2 deletions docs/docs/integrations/vectorstores/qdrant.ipynb
Original file line number Diff line number Diff line change
Expand Up @@ -317,7 +317,7 @@
"To search with only dense vectors,\n",
"\n",
"- The `retrieval_mode` parameter should be set to `RetrievalMode.DENSE`(default).\n",
"- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided for the `embedding` parameter."
"- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided to the `embedding` parameter."
]
},
{
Expand Down Expand Up @@ -407,7 +407,7 @@
"To perform a hybrid search using dense and sparse vectors with score fusion,\n",
"\n",
"- The `retrieval_mode` parameter should be set to `RetrievalMode.HYBRID`.\n",
"- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided for the `embedding` parameter.\n",
"- A [dense embeddings](https://python.langchain.com/v0.2/docs/integrations/text_embedding/) value should be provided to the `embedding` parameter.\n",
"- An implementation of the [`SparseEmbeddings`](https://github.com/langchain-ai/langchain/blob/master/libs/partners/qdrant/langchain_qdrant/sparse_embeddings.py) interface using any sparse embeddings provider has to be provided as value to the `sparse_embedding` parameter.\n",
"\n",
"Note that if you've added documents with the `HYBRID` mode, you can switch to any retrieval mode when searching. Since both the dense and sparse vectors are available in the collection."
Expand Down
74 changes: 46 additions & 28 deletions libs/community/langchain_community/embeddings/fastembed.py
Original file line number Diff line number Diff line change
@@ -1,10 +1,14 @@
import importlib
import importlib.metadata
from typing import Any, Dict, List, Literal, Optional

import numpy as np
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra
from langchain_core.utils import pre_init

MIN_VERSION = "0.2.0"


class FastEmbedEmbeddings(BaseModel, Embeddings):
"""Qdrant FastEmbedding models.
Expand Down Expand Up @@ -48,12 +52,24 @@ class FastEmbedEmbeddings(BaseModel, Embeddings):
The available options are: "default" and "passage"
"""

batch_size: int = 256
"""Batch size for encoding. Higher values will use more memory, but be faster.
Defaults to 256.
"""

parallel: Optional[int] = None
"""If `>1`, parallel encoding is used, recommended for encoding of large datasets.
If `0`, use all available cores.
If `None`, don't use data-parallel processing, use default onnxruntime threading.
Defaults to `None`.
"""

_model: Any # : :meta private:

class Config:
"""Configuration for this pydantic object."""

extra = Extra.forbid
extra = Extra.allow

@pre_init
def validate_environment(cls, values: Dict) -> Dict:
Expand All @@ -64,31 +80,25 @@ def validate_environment(cls, values: Dict) -> Dict:
threads = values.get("threads")

try:
# >= v0.2.0
from fastembed import TextEmbedding

values["_model"] = TextEmbedding(
model_name=model_name,
max_length=max_length,
cache_dir=cache_dir,
threads=threads,
fastembed = importlib.import_module("fastembed")

except ModuleNotFoundError:
raise ImportError(
"Could not import 'fastembed' Python package. "
"Please install it with `pip install fastembed`."
)
except ImportError as ie:
try:
# < v0.2.0
from fastembed.embedding import FlagEmbedding

values["_model"] = FlagEmbedding(
model_name=model_name,
max_length=max_length,
cache_dir=cache_dir,
threads=threads,
)
except ImportError:
raise ImportError(
"Could not import 'fastembed' Python package. "
"Please install it with `pip install fastembed`."
) from ie

if importlib.metadata.version("fastembed") < MIN_VERSION:
raise ImportError(
'FastEmbedEmbeddings requires `pip install -U "fastembed>=0.2.0"`.'
)

values["_model"] = fastembed.TextEmbedding(
model_name=model_name,
max_length=max_length,
cache_dir=cache_dir,
threads=threads,
)
return values

def embed_documents(self, texts: List[str]) -> List[List[float]]:
Expand All @@ -102,9 +112,13 @@ def embed_documents(self, texts: List[str]) -> List[List[float]]:
"""
embeddings: List[np.ndarray]
if self.doc_embed_type == "passage":
embeddings = self._model.passage_embed(texts)
embeddings = self._model.passage_embed(
texts, batch_size=self.batch_size, parallel=self.parallel
)
else:
embeddings = self._model.embed(texts)
embeddings = self._model.embed(
texts, batch_size=self.batch_size, parallel=self.parallel
)
return [e.tolist() for e in embeddings]

def embed_query(self, text: str) -> List[float]:
Expand All @@ -116,5 +130,9 @@ def embed_query(self, text: str) -> List[float]:
Returns:
Embeddings for the text.
"""
query_embeddings: np.ndarray = next(self._model.query_embed(text))
query_embeddings: np.ndarray = next(
self._model.query_embed(
text, batch_size=self.batch_size, parallel=self.parallel
)
)
return query_embeddings.tolist()
Original file line number Diff line number Diff line change
Expand Up @@ -11,8 +11,9 @@
@pytest.mark.parametrize("max_length", [50, 512])
@pytest.mark.parametrize("doc_embed_type", ["default", "passage"])
@pytest.mark.parametrize("threads", [0, 10])
@pytest.mark.parametrize("batch_size", [1, 10])
def test_fastembed_embedding_documents(
model_name: str, max_length: int, doc_embed_type: str, threads: int
model_name: str, max_length: int, doc_embed_type: str, threads: int, batch_size: int
) -> None:
"""Test fastembed embeddings for documents."""
documents = ["foo bar", "bar foo"]
Expand All @@ -21,6 +22,7 @@ def test_fastembed_embedding_documents(
max_length=max_length,
doc_embed_type=doc_embed_type, # type: ignore[arg-type]
threads=threads,
batch_size=batch_size,
)
output = embedding.embed_documents(documents)
assert len(output) == 2
Expand All @@ -31,10 +33,15 @@ def test_fastembed_embedding_documents(
"model_name", ["sentence-transformers/all-MiniLM-L6-v2", "BAAI/bge-small-en-v1.5"]
)
@pytest.mark.parametrize("max_length", [50, 512])
def test_fastembed_embedding_query(model_name: str, max_length: int) -> None:
@pytest.mark.parametrize("batch_size", [1, 10])
def test_fastembed_embedding_query(
model_name: str, max_length: int, batch_size: int
) -> None:
"""Test fastembed embeddings for query."""
document = "foo bar"
embedding = FastEmbedEmbeddings(model_name=model_name, max_length=max_length) # type: ignore[call-arg]
embedding = FastEmbedEmbeddings(
model_name=model_name, max_length=max_length, batch_size=batch_size
) # type: ignore[call-arg]
output = embedding.embed_query(document)
assert len(output) == 384

Expand Down

0 comments on commit 51b1544

Please sign in to comment.