Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Bedrock llm and embeddings #5464

Merged
merged 2 commits into from
May 31, 2023
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
24 changes: 24 additions & 0 deletions docs/integrations/bedrock.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,24 @@
# Amazon Bedrock

>[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case.

## Installation and Setup

```bash
pip install boto3
```

## LLM

See a [usage example](../modules/models/llms/integrations/bedrock.ipynb).

```python
from langchain import Bedrock
```

## Text Embedding Models

See a [usage example](../modules/models/text_embedding/examples/bedrock.ipynb).
```python
from langchain.embeddings import BedrockEmbeddings
```
86 changes: 86 additions & 0 deletions docs/modules/models/llms/integrations/bedrock.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,86 @@
{
"cells": [
{
"cell_type": "markdown",
"metadata": {},
"source": [
"# Amazon Bedrock"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"[Amazon Bedrock](https://aws.amazon.com/bedrock/) is a fully managed service that makes FMs from leading AI startups and Amazon available via an API, so you can choose from a wide range of FMs to find the model that is best suited for your use case"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"%pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {
"tags": []
},
"outputs": [],
"source": [
"from langchain.llms.bedrock import Bedrock\n",
"\n",
"llm = Bedrock(credentials_profile_name=\"bedrock-admin\", model_id=\"amazon.titan-tg1-large\")"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"### Using in a conversation chain"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from langchain.chains import ConversationChain\n",
"from langchain.memory import ConversationBufferMemory\n",
"\n",
"conversation = ConversationChain(\n",
" llm=llm,\n",
" verbose=True,\n",
" memory=ConversationBufferMemory()\n",
")\n",
"\n",
"conversation.predict(input=\"Hi there!\")"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 4
}
75 changes: 75 additions & 0 deletions docs/modules/models/text_embedding/examples/bedrock.ipynb
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
{
"cells": [
{
"cell_type": "markdown",
"id": "75e378f5-55d7-44b6-8e2e-6d7b8b171ec4",
"metadata": {},
"source": [
"# Bedrock Embeddings"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "2dbe40fa-7c0b-4bcb-a712-230bf613a42f",
"metadata": {},
"outputs": [],
"source": [
"%pip install boto3"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "282239c8-e03a-4abc-86c1-ca6120231a20",
"metadata": {},
"outputs": [],
"source": [
"from langchain.embeddings import BedrockEmbeddings\n",
"\n",
"embeddings = BedrockEmbeddings(credentials_profile_name=\"bedrock-admin\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "19a46868-4bed-40cd-89ca-9813fbfda9cb",
"metadata": {},
"outputs": [],
"source": [
"embeddings.embed_query(\"This is a content of the document\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"id": "cf0349c4-6408-4342-8691-69276a388784",
"metadata": {},
"outputs": [],
"source": [
"embeddings.embed_documents([\"This is a content of the document\"])"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "Python 3 (ipykernel)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.10.11"
}
},
"nbformat": 4,
"nbformat_minor": 5
}
2 changes: 2 additions & 0 deletions langchain/embeddings/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,6 +6,7 @@
AlephAlphaAsymmetricSemanticEmbedding,
AlephAlphaSymmetricSemanticEmbedding,
)
from langchain.embeddings.bedrock import BedrockEmbeddings
from langchain.embeddings.cohere import CohereEmbeddings
from langchain.embeddings.elasticsearch import ElasticsearchEmbeddings
from langchain.embeddings.fake import FakeEmbeddings
Expand Down Expand Up @@ -56,6 +57,7 @@
"GooglePalmEmbeddings",
"MiniMaxEmbeddings",
"VertexAIEmbeddings",
"BedrockEmbeddings",
]


Expand Down
157 changes: 157 additions & 0 deletions langchain/embeddings/bedrock.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,157 @@
import json
import os
from typing import Any, Dict, List, Optional

from pydantic import BaseModel, Extra, root_validator

from langchain.embeddings.base import Embeddings


class BedrockEmbeddings(BaseModel, Embeddings):
"""Embeddings provider to invoke Bedrock embedding models.

To authenticate, the AWS client uses the following methods to
automatically load credentials:
https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html

If a specific credential profile should be used, you must pass
the name of the profile from the ~/.aws/credentials file that is to be used.

Make sure the credentials / roles used have the required policies to
access the Bedrock service.
"""

"""
Example:
.. code-block:: python

from langchain.bedrock_embeddings import BedrockEmbeddings

region_name ="us-east-1"
credentials_profile_name = "default"
model_id = "amazon.titan-e1t-medium"

be = BedrockEmbeddings(
credentials_profile_name=credentials_profile_name,
region_name=region_name,
model_id=model_id
)
"""

client: Any #: :meta private:

region_name: Optional[str] = None
"""The aws region e.g., `us-west-2`. Fallsback to AWS_DEFAULT_REGION env variable
or region specified in ~/.aws/config in case it is not provided here.
"""

credentials_profile_name: Optional[str] = None
"""The name of the profile in the ~/.aws/credentials or ~/.aws/config files, which
has either access keys or role information specified.
If not specified, the default credential profile or, if on an EC2 instance,
credentials from IMDS will be used.
See: https://boto3.amazonaws.com/v1/documentation/api/latest/guide/credentials.html
"""

model_id: str = "amazon.titan-e1t-medium"
"""Id of the model to call, e.g., amazon.titan-e1t-medium, this is
equivalent to the modelId property in the list-foundation-models api"""

model_kwargs: Optional[Dict] = None
"""Key word arguments to pass to the model."""

class Config:
"""Configuration for this pydantic object."""

extra = Extra.forbid

@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that AWS credentials to and python package exists in environment."""
try:
import boto3

if values["credentials_profile_name"] is not None:
session = boto3.Session(profile_name=values["credentials_profile_name"])
else:
# use default credentials
session = boto3.Session()

client_params = {}
if values["region_name"]:
client_params["region_name"] = values["region_name"]

values["client"] = session.client("bedrock", **client_params)

except ImportError:
raise ModuleNotFoundError(
"Could not import boto3 python package. "
"Please install it with `pip install boto3`."
)
except Exception as e:
raise ValueError(
"Could not load credentials to authenticate with AWS client. "
"Please check that credentials in the specified "
"profile name are valid."
) from e

return values

def _embedding_func(self, text: str) -> List[float]:
"""Call out to Bedrock embedding endpoint."""
# replace newlines, which can negatively affect performance.
text = text.replace(os.linesep, " ")
_model_kwargs = self.model_kwargs or {}

input_body = {**_model_kwargs}
input_body["inputText"] = text
body = json.dumps(input_body)
content_type = "application/json"
accepts = "application/json"

embeddings = []
try:
response = self.client.invoke_model(
body=body,
modelId=self.model_id,
accept=accepts,
contentType=content_type,
)
response_body = json.loads(response.get("body").read())
embeddings = response_body.get("embedding")
except Exception as e:
raise ValueError(f"Error raised by inference endpoint: {e}")

return embeddings

def embed_documents(
self, texts: List[str], chunk_size: int = 1
) -> List[List[float]]:
"""Compute doc embeddings using a Bedrock model.

Args:
texts: The list of texts to embed.
chunk_size: Bedrock currently only allows single string
inputs, so chunk size is always 1. This input is here
only for compatibility with the embeddings interface.


Returns:
List of embeddings, one for each text.
"""
results = []
for text in texts:
response = self._embedding_func(text)
results.append(response)
return results

def embed_query(self, text: str) -> List[float]:
"""Compute query embeddings using a Bedrock model.

Args:
text: The text to embed.

Returns:
Embeddings for the text.
"""
return self._embedding_func(text)
2 changes: 2 additions & 0 deletions langchain/llms/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@
from langchain.llms.bananadev import Banana
from langchain.llms.base import BaseLLM
from langchain.llms.beam import Beam
from langchain.llms.bedrock import Bedrock
from langchain.llms.cerebriumai import CerebriumAI
from langchain.llms.cohere import Cohere
from langchain.llms.ctransformers import CTransformers
Expand Down Expand Up @@ -48,6 +49,7 @@
"Anyscale",
"Banana",
"Beam",
"Bedrock",
"CerebriumAI",
"Cohere",
"CTransformers",
Expand Down
Loading