Skip to content

Commit

Permalink
community[minor]: feat: Layerup Security integration (#4929)
Browse files Browse the repository at this point in the history
* feat: Layerup Security integration

* nit: remove environment variable reference

* docs: Layerup Security docs

* fix: package.json, fix docs location

* feat: bump layerup-security version, support untrusted_input

* nit: LLM -> BaseLLM

* Update lock

* Build and lint fixes

* fix: bump layerup-security SDK version to 1.5.9

* Update lockfile

* feat: bump SDK to 1.5.10 to match OpenAI requirement

* Bump version

* fix: type errors

* Bump dep

* Rename test

---------

Co-authored-by: jacoblee93 <jacoblee93@gmail.com>
  • Loading branch information
JamsheedMistri and jacoblee93 authored May 21, 2024
1 parent e79183c commit 62275b1
Show file tree
Hide file tree
Showing 9 changed files with 349 additions and 0 deletions.
31 changes: 31 additions & 0 deletions docs/core_docs/docs/integrations/llms/layerup_security.mdx
Original file line number Diff line number Diff line change
@@ -0,0 +1,31 @@
import CodeBlock from "@theme/CodeBlock";

# Layerup Security

The [Layerup Security](https://uselayerup.com) integration allows you to secure your calls to any LangChain LLM, LLM chain or LLM agent. The LLM object wraps around any existing LLM object, allowing for a secure layer between your users and your LLMs.

While the Layerup Security object is designed as an LLM, it is not actually an LLM itself, it simply wraps around an LLM, allowing it to adapt the same functionality as the underlying LLM.

## Setup

First, you'll need a Layerup Security account from the Layerup [website](https://uselayerup.com).

Next, create a project via the [dashboard](https://dashboard.uselayerup.com), and copy your API key. We recommend putting your API key in your project's environment.

Install the Layerup Security SDK:

```bash npm2yarn
npm install @layerup/layerup-security
```

And install LangChain Community:

```bash npm2yarn
npm install @langchain/community
```

And now you're ready to start protecting your LLM calls with Layerup Security!

import LayerupSecurityExampleCode from "@examples/llms/layerup_security.ts";

<CodeBlock language="typescript">{LayerupSecurityExampleCode}</CodeBlock>
1 change: 1 addition & 0 deletions examples/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -54,6 +54,7 @@
"@langchain/textsplitters": "workspace:*",
"@langchain/weaviate": "workspace:*",
"@langchain/yandex": "workspace:*",
"@layerup/layerup-security": "^1.5.12",
"@opensearch-project/opensearch": "^2.2.0",
"@pinecone-database/pinecone": "^2.2.0",
"@planetscale/database": "^1.8.0",
Expand Down
59 changes: 59 additions & 0 deletions examples/src/llms/layerup_security.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,59 @@
import {
LayerupSecurity,
LayerupSecurityOptions,
} from "@langchain/community/llms/layerup_security";
import { GuardrailResponse } from "@layerup/layerup-security";
import { OpenAI } from "@langchain/openai";

// Create an instance of your favorite LLM
const openai = new OpenAI({
modelName: "gpt-3.5-turbo",
openAIApiKey: process.env.OPENAI_API_KEY,
});

// Configure Layerup Security
const layerupSecurityOptions: LayerupSecurityOptions = {
// Specify a LLM that Layerup Security will wrap around
llm: openai,

// Layerup API key, from the Layerup dashboard
layerupApiKey: process.env.LAYERUP_API_KEY,

// Custom base URL, if self hosting
layerupApiBaseUrl: "https://api.uselayerup.com/v1",

// List of guardrails to run on prompts before the LLM is invoked
promptGuardrails: [],

// List of guardrails to run on responses from the LLM
responseGuardrails: ["layerup.hallucination"],

// Whether or not to mask the prompt for PII & sensitive data before it is sent to the LLM
mask: false,

// Metadata for abuse tracking, customer tracking, and scope tracking.
metadata: { customer: "example@uselayerup.com" },

// Handler for guardrail violations on the response guardrails
handlePromptGuardrailViolation: (violation: GuardrailResponse) => {
if (violation.offending_guardrail === "layerup.sensitive_data") {
// Custom logic goes here
}

return {
role: "assistant",
content: `There was sensitive data! I cannot respond. Here's a dynamic canned response. Current date: ${Date.now()}`,
};
},

// Handler for guardrail violations on the response guardrails
handleResponseGuardrailViolation: (violation: GuardrailResponse) => ({
role: "assistant",
content: `Custom canned response with dynamic data! The violation rule was ${violation.offending_guardrail}.`,
}),
};

const layerupSecurity = new LayerupSecurity(layerupSecurityOptions);
const response = await layerupSecurity.invoke(
"Summarize this message: my name is Bob Dylan. My SSN is 123-45-6789."
);
2 changes: 2 additions & 0 deletions libs/langchain-community/langchain.config.js
Original file line number Diff line number Diff line change
Expand Up @@ -106,6 +106,7 @@ export const config = {
"llms/watsonx_ai": "llms/watsonx_ai",
"llms/writer": "llms/writer",
"llms/yandex": "llms/yandex",
"llms/layerup_security": "llms/layerup_security",
// vectorstores
"vectorstores/analyticdb": "vectorstores/analyticdb",
"vectorstores/astradb": "vectorstores/astradb",
Expand Down Expand Up @@ -340,6 +341,7 @@ export const config = {
"llms/llama_cpp",
"llms/writer",
"llms/portkey",
"llms/layerup_security",
"vectorstores/analyticdb",
"vectorstores/astradb",
"vectorstores/azure_aisearch",
Expand Down
5 changes: 5 additions & 0 deletions libs/langchain-community/package.json
Original file line number Diff line number Diff line change
Expand Up @@ -82,6 +82,7 @@
"@huggingface/inference": "^2.6.4",
"@jest/globals": "^29.5.0",
"@langchain/scripts": "~0.0",
"@layerup/layerup-security": "^1.5.12",
"@mendable/firecrawl-js": "^0.0.13",
"@mlc-ai/web-llm": "^0.2.35",
"@mozilla/readability": "^0.4.4",
Expand Down Expand Up @@ -236,6 +237,7 @@
"@google-cloud/storage": "^6.10.1 || ^7.7.0",
"@gradientai/nodejs-sdk": "^1.2.0",
"@huggingface/inference": "^2.6.4",
"@layerup/layerup-security": "^1.5.12",
"@mendable/firecrawl-js": "^0.0.13",
"@mlc-ai/web-llm": "^0.2.35",
"@mozilla/readability": "*",
Expand Down Expand Up @@ -404,6 +406,9 @@
"@huggingface/inference": {
"optional": true
},
"@layerup/layerup-security": {
"optional": true
},
"@mendable/firecrawl-js": {
"optional": true
},
Expand Down
169 changes: 169 additions & 0 deletions libs/langchain-community/src/llms/layerup_security.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,169 @@
import {
LLM,
BaseLLM,
type BaseLLMParams,
} from "@langchain/core/language_models/llms";
import {
GuardrailResponse,
LayerupSecurity as LayerupSecuritySDK,
LLMMessage,
} from "@layerup/layerup-security";

export interface LayerupSecurityOptions extends BaseLLMParams {
llm: BaseLLM;
layerupApiKey?: string;
layerupApiBaseUrl?: string;
promptGuardrails?: string[];
responseGuardrails?: string[];
mask?: boolean;
metadata?: Record<string, unknown>;
handlePromptGuardrailViolation?: (violation: GuardrailResponse) => LLMMessage;
handleResponseGuardrailViolation?: (
violation: GuardrailResponse
) => LLMMessage;
}

function defaultGuardrailViolationHandler(
violation: GuardrailResponse
): LLMMessage {
if (violation.canned_response) return violation.canned_response;

const guardrailName = violation.offending_guardrail
? `Guardrail ${violation.offending_guardrail}`
: "A guardrail";
throw new Error(
`${guardrailName} was violated without a proper guardrail violation handler.`
);
}

export class LayerupSecurity extends LLM {
static lc_name() {
return "LayerupSecurity";
}

lc_serializable = true;

llm: BaseLLM;

layerupApiKey: string;

layerupApiBaseUrl = "https://api.uselayerup.com/v1";

promptGuardrails: string[] = [];

responseGuardrails: string[] = [];

mask = false;

metadata: Record<string, unknown> = {};

handlePromptGuardrailViolation: (violation: GuardrailResponse) => LLMMessage =
defaultGuardrailViolationHandler;

handleResponseGuardrailViolation: (
violation: GuardrailResponse
) => LLMMessage = defaultGuardrailViolationHandler;

private layerup: LayerupSecuritySDK;

constructor(options: LayerupSecurityOptions) {
super(options);

if (!options.llm) {
throw new Error("Layerup Security requires an LLM to be provided.");
} else if (!options.layerupApiKey) {
throw new Error("Layerup Security requires an API key to be provided.");
}

this.llm = options.llm;
this.layerupApiKey = options.layerupApiKey;
this.layerupApiBaseUrl =
options.layerupApiBaseUrl || this.layerupApiBaseUrl;
this.promptGuardrails = options.promptGuardrails || this.promptGuardrails;
this.responseGuardrails =
options.responseGuardrails || this.responseGuardrails;
this.mask = options.mask || this.mask;
this.metadata = options.metadata || this.metadata;
this.handlePromptGuardrailViolation =
options.handlePromptGuardrailViolation ||
this.handlePromptGuardrailViolation;
this.handleResponseGuardrailViolation =
options.handleResponseGuardrailViolation ||
this.handleResponseGuardrailViolation;

this.layerup = new LayerupSecuritySDK({
apiKey: this.layerupApiKey,
baseURL: this.layerupApiBaseUrl,
});
}

_llmType() {
return "layerup_security";
}

async _call(input: string, options?: BaseLLMParams): Promise<string> {
// Since LangChain LLMs only support string inputs, we will wrap each call to Layerup in a single-message
// array of messages, then extract the string element when we need to access it.
let messages: LLMMessage[] = [
{
role: "user",
content: input,
},
];
let unmaskResponse;

if (this.mask) {
[messages, unmaskResponse] = await this.layerup.maskPrompt(
messages,
this.metadata
);
}

if (this.promptGuardrails.length > 0) {
const securityResponse = await this.layerup.executeGuardrails(
this.promptGuardrails,
messages,
input,
this.metadata
);

// If there is a guardrail violation, extract the canned response and reply with that instead
if (!securityResponse.all_safe) {
const replacedResponse: LLMMessage =
this.handlePromptGuardrailViolation(securityResponse);
return replacedResponse.content as string;
}
}

// Invoke the underlying LLM with the prompt and options
let result = await this.llm.invoke(messages[0].content as string, options);

if (this.mask && unmaskResponse) {
result = unmaskResponse(result);
}

// Add to messages array for response guardrail handler
messages.push({
role: "assistant",
content: result,
});

if (this.responseGuardrails.length > 0) {
const securityResponse = await this.layerup.executeGuardrails(
this.responseGuardrails,
messages,
result,
this.metadata
);

// If there is a guardrail violation, extract the canned response and reply with that instead
if (!securityResponse.all_safe) {
const replacedResponse: LLMMessage =
this.handleResponseGuardrailViolation(securityResponse);
return replacedResponse.content as string;
}
}

return result;
}
}
48 changes: 48 additions & 0 deletions libs/langchain-community/src/llms/tests/layerup_security.test.ts
Original file line number Diff line number Diff line change
@@ -0,0 +1,48 @@
import { test } from "@jest/globals";
import { LLM, type BaseLLMParams } from "@langchain/core/language_models/llms";
import { GuardrailResponse } from "@layerup/layerup-security/types.js";
import {
LayerupSecurity,
LayerupSecurityOptions,
} from "../layerup_security.js";

// Mock LLM for testing purposes
export class MockLLM extends LLM {
static lc_name() {
return "MockLLM";
}

lc_serializable = true;

_llmType() {
return "mock_llm";
}

async _call(_input: string, _options?: BaseLLMParams): Promise<string> {
return "Hi Bob! How are you?";
}
}

test("Test LayerupSecurity with invalid API key", async () => {
const mockLLM = new MockLLM({});
const layerupSecurityOptions: LayerupSecurityOptions = {
llm: mockLLM,
layerupApiKey: "-- invalid API key --",
layerupApiBaseUrl: "https://api.uselayerup.com/v1",
promptGuardrails: [],
responseGuardrails: ["layerup.hallucination"],
mask: false,
metadata: { customer: "example@uselayerup.com" },
handleResponseGuardrailViolation: (violation: GuardrailResponse) => ({
role: "assistant",
content: `Custom canned response with dynamic data! The violation rule was ${violation.offending_guardrail}.`,
}),
};

await expect(async () => {
const layerupSecurity = new LayerupSecurity(layerupSecurityOptions);
await layerupSecurity.invoke(
"My name is Bob Dylan. My SSN is 123-45-6789."
);
}).rejects.toThrowError();
}, 50000);
1 change: 1 addition & 0 deletions libs/langchain-community/src/load/import_constants.ts
Original file line number Diff line number Diff line change
Expand Up @@ -35,6 +35,7 @@ export const optionalImportEntrypoints: string[] = [
"langchain_community/llms/sagemaker_endpoint",
"langchain_community/llms/watsonx_ai",
"langchain_community/llms/writer",
"langchain_community/llms/layerup_security",
"langchain_community/vectorstores/analyticdb",
"langchain_community/vectorstores/astradb",
"langchain_community/vectorstores/azure_aisearch",
Expand Down
Loading

0 comments on commit 62275b1

Please sign in to comment.