Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Fix Deepseek Function/Tool Calling #11023

Merged
merged 1 commit into from
Nov 25, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- multi-tool-call
- stream-tool-call
model_properties:
Expand Down Expand Up @@ -72,7 +73,7 @@ parameter_rules:
- text
- json_object
pricing:
input: '1'
output: '2'
unit: '0.000001'
input: "1"
output: "2"
unit: "0.000001"
currency: RMB
Original file line number Diff line number Diff line change
Expand Up @@ -5,6 +5,7 @@ label:
model_type: llm
features:
- agent-thought
- tool-call
- multi-tool-call
- stream-tool-call
model_properties:
Expand Down
98 changes: 10 additions & 88 deletions api/core/model_runtime/model_providers/deepseek/llm/llm.py
Original file line number Diff line number Diff line change
@@ -1,18 +1,17 @@
from collections.abc import Generator
from typing import Optional, Union
from urllib.parse import urlparse

import tiktoken
from yarl import URL

from core.model_runtime.entities.llm_entities import LLMResult
from core.model_runtime.entities.llm_entities import LLMMode, LLMResult
from core.model_runtime.entities.message_entities import (
PromptMessage,
PromptMessageTool,
)
from core.model_runtime.model_providers.openai.llm.llm import OpenAILargeLanguageModel
from core.model_runtime.model_providers.openai_api_compatible.llm.llm import OAIAPICompatLargeLanguageModel


class DeepSeekLargeLanguageModel(OpenAILargeLanguageModel):
class DeepseekLargeLanguageModel(OAIAPICompatLargeLanguageModel):
def _invoke(
self,
model: str,
Expand All @@ -25,92 +24,15 @@ def _invoke(
user: Optional[str] = None,
) -> Union[LLMResult, Generator]:
self._add_custom_parameters(credentials)

return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream, user)
return super()._invoke(model, credentials, prompt_messages, model_parameters, tools, stop, stream)

def validate_credentials(self, model: str, credentials: dict) -> None:
self._add_custom_parameters(credentials)
super().validate_credentials(model, credentials)

# refactored from openai model runtime, use cl100k_base for calculate token number
def _num_tokens_from_string(self, model: str, text: str, tools: Optional[list[PromptMessageTool]] = None) -> int:
"""
Calculate num tokens for text completion model with tiktoken package.

:param model: model name
:param text: prompt text
:param tools: tools for tool calling
:return: number of tokens
"""
encoding = tiktoken.get_encoding("cl100k_base")
num_tokens = len(encoding.encode(text))

if tools:
num_tokens += self._num_tokens_for_tools(encoding, tools)

return num_tokens

# refactored from openai model runtime, use cl100k_base for calculate token number
def _num_tokens_from_messages(
self, model: str, messages: list[PromptMessage], tools: Optional[list[PromptMessageTool]] = None
) -> int:
"""Calculate num tokens for gpt-3.5-turbo and gpt-4 with tiktoken package.

Official documentation: https://github.com/openai/openai-cookbook/blob/
main/examples/How_to_format_inputs_to_ChatGPT_models.ipynb"""
encoding = tiktoken.get_encoding("cl100k_base")
tokens_per_message = 3
tokens_per_name = 1

num_tokens = 0
messages_dict = [self._convert_prompt_message_to_dict(m) for m in messages]
for message in messages_dict:
num_tokens += tokens_per_message
for key, value in message.items():
# Cast str(value) in case the message value is not a string
# This occurs with function messages
# TODO: The current token calculation method for the image type is not implemented,
# which need to download the image and then get the resolution for calculation,
# and will increase the request delay
if isinstance(value, list):
text = ""
for item in value:
if isinstance(item, dict) and item["type"] == "text":
text += item["text"]

value = text

if key == "tool_calls":
for tool_call in value:
for t_key, t_value in tool_call.items():
num_tokens += len(encoding.encode(t_key))
if t_key == "function":
for f_key, f_value in t_value.items():
num_tokens += len(encoding.encode(f_key))
num_tokens += len(encoding.encode(f_value))
else:
num_tokens += len(encoding.encode(t_key))
num_tokens += len(encoding.encode(t_value))
else:
num_tokens += len(encoding.encode(str(value)))

if key == "name":
num_tokens += tokens_per_name

# every reply is primed with <im_start>assistant
num_tokens += 3

if tools:
num_tokens += self._num_tokens_for_tools(encoding, tools)

return num_tokens

@staticmethod
def _add_custom_parameters(credentials: dict) -> None:
credentials["mode"] = "chat"
credentials["openai_api_key"] = credentials["api_key"]
if "endpoint_url" not in credentials or credentials["endpoint_url"] == "":
credentials["openai_api_base"] = "https://api.deepseek.com"
else:
parsed_url = urlparse(credentials["endpoint_url"])
credentials["openai_api_base"] = f"{parsed_url.scheme}://{parsed_url.netloc}"
def _add_custom_parameters(credentials) -> None:
credentials["endpoint_url"] = str(URL(credentials.get("endpoint_url", "https://api.deepseek.com")))
credentials["mode"] = LLMMode.CHAT.value
credentials["function_calling_type"] = "tool_call"
credentials["stream_function_calling"] = "support"
Loading