Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Resolve 9508 openai compatible rerank #9511

Merged
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
Original file line number Diff line number Diff line change
Expand Up @@ -8,6 +8,7 @@ supported_model_types:
- llm
- text-embedding
- speech2text
- rerank
configurate_methods:
- customizable-model
model_credential_schema:
Expand Down Expand Up @@ -83,6 +84,19 @@ model_credential_schema:
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: context_size
label:
zh_Hans: 模型上下文长度
en_US: Model context size
required: true
show_on:
- variable: __model_type
value: rerank
type: text-input
default: '4096'
placeholder:
zh_Hans: 在此输入您的模型上下文长度
en_US: Enter your Model context size
- variable: max_tokens_to_sample
label:
zh_Hans: 最大 token 上限
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,159 @@
from json import dumps
from typing import Optional

import httpx
from requests import post
from yarl import URL

from core.model_runtime.entities.common_entities import I18nObject
from core.model_runtime.entities.model_entities import AIModelEntity, FetchFrom, ModelType
from core.model_runtime.entities.rerank_entities import RerankDocument, RerankResult
from core.model_runtime.errors.invoke import (
InvokeAuthorizationError,
InvokeBadRequestError,
InvokeConnectionError,
InvokeError,
InvokeRateLimitError,
InvokeServerUnavailableError,
)
from core.model_runtime.errors.validate import CredentialsValidateFailedError
from core.model_runtime.model_providers.__base.rerank_model import RerankModel


class OAICompatRerankModel(RerankModel):
"""
rerank model API is compatible with Jina rerank model API. So copy the JinaRerankModel class code here.
we need enhance for llama.cpp , which return raw score, not normalize score 0~1. It seems Dify need it
"""

def _invoke(
self,
model: str,
credentials: dict,
query: str,
docs: list[str],
score_threshold: Optional[float] = None,
top_n: Optional[int] = None,
user: Optional[str] = None,
) -> RerankResult:
"""
Invoke rerank model

:param model: model name
:param credentials: model credentials
:param query: search query
:param docs: docs for reranking
:param score_threshold: score threshold
:param top_n: top n documents to return
:param user: unique user id
:return: rerank result
"""
if len(docs) == 0:
return RerankResult(model=model, docs=[])

server_url = credentials["endpoint_url"]
model_name = model

if not server_url:
raise CredentialsValidateFailedError("server_url is required")
if not model_name:
raise CredentialsValidateFailedError("model_name is required")

url = server_url
headers = {"Authorization": f"Bearer {credentials.get('api_key')}", "Content-Type": "application/json"}

# TODO: Do we need truncate docs to avoid llama.cpp return error?

data = {"model": model_name, "query": query, "documents": docs, "top_n": top_n}

try:
response = post(str(URL(url) / "rerank"), headers=headers, data=dumps(data), timeout=60)
response.raise_for_status()
results = response.json()

rerank_documents = []
scores = [result["relevance_score"] for result in results["results"]]

# Min-Max Normalization: Normalize scores to 0 ~ 1.0 range
min_score = min(scores)
max_score = max(scores)
score_range = max_score - min_score if max_score != min_score else 1.0 # Avoid division by zero

for result in results["results"]:
index = result["index"]

# Retrieve document text (fallback if llama.cpp rerank doesn't return it)
text = result.get("document", {}).get("text", docs[index])

# Normalize the score
normalized_score = (result["relevance_score"] - min_score) / score_range

# Create RerankDocument object with normalized score
rerank_document = RerankDocument(
index=index,
text=text,
score=normalized_score,
)

# Apply threshold (if defined)
if score_threshold is None or normalized_score >= score_threshold:
rerank_documents.append(rerank_document)

# Sort rerank_documents by normalized score in descending order
rerank_documents.sort(key=lambda doc: doc.score, reverse=True)

return RerankResult(model=model, docs=rerank_documents)

except httpx.HTTPStatusError as e:
raise InvokeServerUnavailableError(str(e))

def validate_credentials(self, model: str, credentials: dict) -> None:
"""
Validate model credentials

:param model: model name
:param credentials: model credentials
:return:
"""
try:
self._invoke(
model=model,
credentials=credentials,
query="What is the capital of the United States?",
docs=[
"Carson City is the capital city of the American state of Nevada. At the 2010 United States "
"Census, Carson City had a population of 55,274.",
"The Commonwealth of the Northern Mariana Islands is a group of islands in the Pacific Ocean that "
"are a political division controlled by the United States. Its capital is Saipan.",
],
score_threshold=0.8,
)
except Exception as ex:
raise CredentialsValidateFailedError(str(ex))

@property
def _invoke_error_mapping(self) -> dict[type[InvokeError], list[type[Exception]]]:
"""
Map model invoke error to unified error
"""
return {
InvokeConnectionError: [httpx.ConnectError],
InvokeServerUnavailableError: [httpx.RemoteProtocolError],
InvokeRateLimitError: [],
InvokeAuthorizationError: [httpx.HTTPStatusError],
InvokeBadRequestError: [httpx.RequestError],
}

def get_customizable_model_schema(self, model: str, credentials: dict) -> AIModelEntity:
"""
generate custom model entities from credentials
"""
entity = AIModelEntity(
model=model,
label=I18nObject(en_US=model),
model_type=ModelType.RERANK,
fetch_from=FetchFrom.CUSTOMIZABLE_MODEL,
model_properties={},
)

return entity