The code is modified from https://github.com/pytorch/examples/tree/master/dcgan.
- Python 3.6
- GPU Memory >= 2G
- Install Pytorch from http://pytorch.org/
- Install Torchvision from the source
git clone https://github.com/pytorch/vision
cd vision
python setup.py install
Because pytorch and torchvision are ongoing projects.
Here we noted that our code is tested based on Pytorch 1.0.0 and Torchvision 0.2.0.
mkdir model
mkdir visual
mkdir result
python train.py --dataset market --dataroot /home/zzd/market1501/pytorch/train_all --withoutE --name baseline-lsgan8x8-encode --lsgan --gpu_ids 3
--name
the name of the output model
--lsgan
mean using MSELoss(L2Loss)
--gpu_ids
select which gpu to run
--batchSize
default 64
by default, batch norm is used. Conv layers have no bias.
--instance
to use instance norm. Conv layers also learn bias.
--withoutE
to remove Encoder Network. The code will run as the basic LSGAN.
Now I set step learning rate schedule. The learning rate drop 0.1 at 40th epoch.
python test.py --name baseline --batchsize 16 --which_epoch 24