Skip to content

Commit

Permalink
Progress on externalising symmetry
Browse files Browse the repository at this point in the history
Signed-off-by: zeramorphic <zeramorphic@proton.me>
  • Loading branch information
zeramorphic committed Dec 1, 2024
1 parent 8ed7ee5 commit 75a59b8
Show file tree
Hide file tree
Showing 4 changed files with 120 additions and 0 deletions.
1 change: 1 addition & 0 deletions ConNF.lean
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,7 @@ import ConNF.Construction.InductionStatement
import ConNF.Construction.NewModelData
import ConNF.Construction.RaiseStrong
import ConNF.Construction.RunInduction
import ConNF.Construction.TTT
import ConNF.Counting.BaseCoding
import ConNF.Counting.BaseCounting
import ConNF.Counting.CodingFunction
Expand Down
1 change: 1 addition & 0 deletions ConNF/Construction/Code.lean
Original file line number Diff line number Diff line change
Expand Up @@ -27,6 +27,7 @@ class TypedNearLitters (α : Λ) [ModelData α] [Position (Tangle α)] where

export TypedNearLitters (typed)

@[ext]
class LtData where
[data : (β : TypeIndex) → [LtLevel β] → ModelData β]
[positions : (β : TypeIndex) → [LtLevel β] → Position (Tangle β)]
Expand Down
14 changes: 14 additions & 0 deletions ConNF/Construction/Externalise.lean
Original file line number Diff line number Diff line change
Expand Up @@ -42,6 +42,20 @@ theorem heq_funext {α : Sort _} {β γ : α → Sort _} {f : (x : α) → β x}
simp only [heq_eq_eq] at h ⊢
exact funext h

theorem globalLtData_eq [Level] :
globalLtData = ltData (λ β _ ↦ motive β) := by
apply LtData.ext
· ext β hβ
induction β using recBotCoe
case bot => rfl
case coe β => rfl
· apply heq_funext
intro β
induction β using recBotCoe
case bot => rfl
case coe β => rfl
· rfl

theorem globalLeData_eq [Level] :
globalLeData = leData (λ β _ ↦ motive β) := by
apply LeData.ext
Expand Down
104 changes: 104 additions & 0 deletions ConNF/Construction/TTT.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,104 @@
import ConNF.Construction.Externalise

/-!
# New file
In this file...
## Main declarations
* `ConNF.foo`: Something new.
-/

noncomputable section
universe u

open Cardinal Ordinal

open scoped Pointwise

namespace ConNF

variable [Params.{u}]

/-- A redefinition of the derivative of allowable permutations that is invariant of level,
but still has nice definitional properties. -/
@[default_instance 200]
instance {β γ : TypeIndex} : Derivative (AllPerm β) (AllPerm γ) β γ where
deriv ρ A :=
A.recSderiv
(motive := λ (δ : TypeIndex) (A : β ↝ δ) ↦
letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩
letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le)
(show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩
AllPerm δ)
ρ (λ δ ε A h ρ ↦
letI : Level := ⟨δ.recBotCoe (Nonempty.some inferInstance) id⟩
letI : LeLevel δ := ⟨δ.recBotCoe (λ _ ↦ bot_le) (λ _ h ↦ WithBot.coe_le_coe.mpr h.le)
(show δ.recBotCoe (Nonempty.some inferInstance) id = Level.α from rfl)⟩
letI : LeLevel ε := ⟨h.le.trans LeLevel.elim⟩
PreCoherentData.allPermSderiv h ρ)

@[simp]
theorem allPerm_deriv_nil' {β : TypeIndex}
(ρ : AllPerm β) :
ρ ⇘ (.nil : β ↝ β) = ρ :=
rfl

@[simp]
theorem allPerm_deriv_sderiv' {β γ δ : TypeIndex}
(ρ : AllPerm β) (A : β ↝ γ) (h : δ < γ) :
ρ ⇘ (A ↘ h) = ρ ⇘ A ↘ h :=
rfl

def Symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α) : Prop :=
∃ S : Support α, ∀ ρ : AllPerm α, ρᵁ • S = S → ρ ↘ hβ • s = s

def newSetEquiv {α : Λ} :
letI : Level := ⟨α⟩
@TSet _ α newModelData.toPreModelData ≃ TSet α :=
letI : Level := ⟨α⟩
castTSet (D₁ := newModelData) (D₂ := globalModelData) rfl
(by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq])

def allPermEquiv {α : Λ} :
letI : Level := ⟨α⟩
NewPerm ≃ AllPerm α :=
letI : Level := ⟨α⟩
castAllPerm (D₁ := newModelData) (D₂ := globalModelData) rfl
(by rw [globalModelData, motive_eq, constructMotive, globalLtData_eq])

@[simp]
theorem allPermEquiv_forget {α : Λ} (ρ : letI : Level := ⟨α⟩; NewPerm) :
(allPermEquiv ρ)ᵁ = ρᵁ :=
letI : Level := ⟨α⟩
castAllPerm_forget (D₁ := newModelData) (D₂ := globalModelData) _ ρ

theorem exists_of_symmetric {α β : Λ} (s : Set (TSet β)) (hβ : (β : TypeIndex) < α)
(hs : Symmetric s hβ) :
∃ x : TSet α, ∀ y : TSet β, y ∈[hβ] x ↔ y ∈ s := by
letI : Level := ⟨α⟩
letI : LtLevel β := ⟨hβ⟩
suffices ∃ x : (@TSet _ α newModelData.toPreModelData), ∀ y : TSet β, yᵁ ∈[hβ] xᵁ ↔ y ∈ s by
obtain ⟨x, hx⟩ := this
use newSetEquiv x
intro y
rw [← hx]
sorry
obtain rfl | hs' := s.eq_empty_or_nonempty
· use none
intro y
simp only [Set.mem_empty_iff_false, iff_false]
exact not_mem_none y
· use some (Code.toSet ⟨β, s, hs'⟩ ?_)
· intro y
erw [mem_some_iff]
exact Code.mem_toSet _
· obtain ⟨S, hS⟩ := hs
use S
intro ρ hρS
have := hS (allPermEquiv ρ) ?_
· sorry
· rwa [allPermEquiv_forget]

end ConNF

0 comments on commit 75a59b8

Please sign in to comment.