Skip to content

Commit

Permalink
Simplify injective proofs
Browse files Browse the repository at this point in the history
  • Loading branch information
morrison-daniel committed Feb 7, 2025
1 parent 25dbe5f commit 4045019
Showing 1 changed file with 2 additions and 7 deletions.
9 changes: 2 additions & 7 deletions Mathlib/LinearAlgebra/BilinearMap.lean
Original file line number Diff line number Diff line change
Expand Up @@ -266,9 +266,7 @@ theorem lcomp_apply' (f : M →ₗ[R] Nₗ) (g : Nₗ →ₗ[R] Pₗ) : lcomp R

/-- A version of `Function.Injective.comp` for composition of two linear maps. -/
theorem injective_comp_of_injective (f : M →ₗ[R] Nₗ) (g : Nₗ →ₗ[R] Pₗ)
(hf : Injective f) (hg : Injective g) : Injective (g ∘ₗ f) := by
intro m₁ m₂ h
exact hf (hg h)
(hf : Injective f) (hg : Injective g) : Injective (g ∘ₗ f) := hg.comp hf

/-- A version of `Function.Surjective.comp` for composition of two linear maps. -/
theorem surjective_comp_of_surjective (f : M →ₗ[R] Nₗ) (g : Nₗ →ₗ[R] Pₗ) (hf : Surjective f)
Expand Down Expand Up @@ -299,10 +297,7 @@ theorem lcompₛₗ_apply (f : M →ₛₗ[σ₁₂] N) (g : N →ₛₗ[σ₂

/-- A version of `Function.Injective.comp` for composition of two semilinear maps. -/
theorem injective_lcompₛₗ_of_injective (f : M →ₛₗ[σ₁₂] N) (g : N →ₛₗ[σ₂₃] P) (hf : Injective f)
(hg : Injective g) : Injective (lcompₛₗ _ _ f g) := by
intro m₁ m₂ h
simp only [lcompₛₗ_apply] at h
exact hf (hg h)
(hg : Injective g) : Injective (lcompₛₗ _ _ f g) := hg.comp hf

/-- A version of `Function.Surjective.comp` for composition of two semilinear maps. -/
theorem surjective_lcompₛₗ_of_surjective (f : M →ₛₗ[σ₁₂] N) (g : N →ₛₗ[σ₂₃] P) (hf : Surjective f)
Expand Down

0 comments on commit 4045019

Please sign in to comment.