Skip to content

Commit

Permalink
Complete proof of apply_linearCombination'
Browse files Browse the repository at this point in the history
  • Loading branch information
mans0954 committed Feb 8, 2025
1 parent d45761b commit 63dec17
Showing 1 changed file with 4 additions and 7 deletions.
11 changes: 4 additions & 7 deletions Mathlib/LinearAlgebra/QuadraticForm/Basis.lean
Original file line number Diff line number Diff line change
Expand Up @@ -131,8 +131,6 @@ lemma recover2 : Finsupp.linearCombination R (Q.polar_sym2 ∘ Sym2.map g) (scal
sorry
-/

lemma test2 (n : N) : n = 0 ∨ n ≠ 0 := by exact eq_or_ne n 0

open Finsupp in
theorem apply_linearCombination' (Q : QuadraticMap R M N) {g : ι → M} (l : ι →₀ R) :
Q (linearCombination R g l) =
Expand All @@ -150,7 +148,7 @@ theorem apply_linearCombination' (Q : QuadraticMap R M N) {g : ι → M} (l : ι
have e1 : (Q.polar_sym2 ∘ Sym2.map fun i ↦ l i • g i) = (Q.polar_sym2 ∘ Sym2.map (l * g)) := rfl
rw [e1]
simp_rw [test]
conv_rhs => rw [sum]
--conv_rhs => rw [sum]
have e2 (p : Sym2 ι) :
(scalar l * Q.polar_sym2 ∘ Sym2.map g) p = (scalar l) p • Q.polar_sym2 (Sym2.map g p) := rfl
simp_rw [e2]
Expand All @@ -166,12 +164,11 @@ theorem apply_linearCombination' (Q : QuadraticMap R M N) {g : ι → M} (l : ι
· exact mul_eq_zero_of_left hz (l k)
· exact mul_eq_zero_of_right _ (H hz)
simp_all only [Sym2.lift_mk, not_true_eq_false]
rw [Finsupp.sum_of_support_subset (scalar l) e3]
intro p hp
exact zero_smul R (Q.polar_sym2 (Sym2.map g p))




sorry

/-
open Finsupp in
theorem sum_polar_sub_repr_sq (Q : QuadraticMap R M N) (bm : Basis ι R M) (x : M) :
Expand Down

0 comments on commit 63dec17

Please sign in to comment.