Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

feat: Lean.RArray #6070

Merged
merged 5 commits into from
Nov 14, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
1 change: 1 addition & 0 deletions src/Init/Data.lean
Original file line number Diff line number Diff line change
Expand Up @@ -42,3 +42,4 @@ import Init.Data.PLift
import Init.Data.Zero
import Init.Data.NeZero
import Init.Data.Function
import Init.Data.RArray
69 changes: 69 additions & 0 deletions src/Init/Data/RArray.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,69 @@
/-
Copyright (c) 2024 Lean FRO, LLC. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joachim Breitner
-/

prelude
import Init.PropLemmas

namespace Lean

/--
A `RArray` can model `Fin n → α` or `Array α`, but is optimized for a fast kernel-reducible `get`
operation.

The primary intended use case is the “denote” function of a typical proof by reflection proof, where
only the `get` operation is necessary. It is not suitable as a general-purpose data structure.

There is no well-formedness invariant attached to this data structure, to keep it concise; it's
semantics is given through `RArray.get`. In that way one can also view an `RArray` as a decision
tree implementing `Nat → α`.

See `RArray.ofFn` and `RArray.ofArray` in module `Lean.Data.RArray` for functions that construct an
`RArray`.

It is not universe-polymorphic. ; smaller proof objects and no complication with the `ToExpr` type
class.
-/
inductive RArray (α : Type) : Type where
| leaf : α → RArray α
| branch : Nat → RArray α → RArray α → RArray α

variable {α : Type}

/-- The crucial operation, written with very little abstractional overhead -/
noncomputable def RArray.get (a : RArray α) (n : Nat) : α :=
RArray.rec (fun x => x) (fun p _ _ l r => (Nat.ble p n).rec l r) a

private theorem RArray.get_eq_def (a : RArray α) (n : Nat) :
a.get n = match a with
| .leaf x => x
| .branch p l r => (Nat.ble p n).rec (l.get n) (r.get n) := by
conv => lhs; unfold RArray.get
split <;> rfl

/-- `RArray.get`, implemented conventionally -/
def RArray.getImpl (a : RArray α) (n : Nat) : α :=
match a with
| .leaf x => x
| .branch p l r => if n < p then l.getImpl n else r.getImpl n

@[csimp]
theorem RArray.get_eq_getImpl : @RArray.get = @RArray.getImpl := by
funext α a n
induction a with
| leaf _ => rfl
| branch p l r ihl ihr =>
rw [RArray.getImpl, RArray.get_eq_def]
simp only [ihl, ihr, ← Nat.not_le, ← Nat.ble_eq, ite_not]
cases hnp : Nat.ble p n <;> rfl

instance : GetElem (RArray α) Nat α (fun _ _ => True) where
getElem a n _ := a.get n

def RArray.size : RArray α → Nat
| leaf _ => 1
| branch _ l r => l.size + r.size

end Lean
1 change: 1 addition & 0 deletions src/Lean/Data.lean
Original file line number Diff line number Diff line change
Expand Up @@ -30,3 +30,4 @@ import Lean.Data.NameTrie
import Lean.Data.RBTree
import Lean.Data.RBMap
import Lean.Data.Rat
import Lean.Data.RArray
75 changes: 75 additions & 0 deletions src/Lean/Data/RArray.lean
Original file line number Diff line number Diff line change
@@ -0,0 +1,75 @@
/-
Copyright (c) 2024 Lean FRO, LLC. All rights reserved.
Released under Apache 2.0 license as described in the file LICENSE.
Authors: Joachim Breitner
-/

prelude
import Init.Data.RArray
import Lean.ToExpr

/-!
Auxillary definitions related to `Lean.RArray` that are typically only used in meta-code, in
particular the `ToExpr` instance.
-/

namespace Lean

-- This function could live in Init/Data/RArray.lean, but without omega it's tedious to implement
def RArray.ofFn {n : Nat} (f : Fin n → α) (h : 0 < n) : RArray α :=
go 0 n h (Nat.le_refl _)
where
go (lb ub : Nat) (h1 : lb < ub) (h2 : ub ≤ n) : RArray α :=
if h : lb + 1 = ub then
.leaf (f ⟨lb, Nat.lt_of_lt_of_le h1 h2⟩)
else
let mid := (lb + ub)/2
.branch mid (go lb mid (by omega) (by omega)) (go mid ub (by omega) h2)

def RArray.ofArray (xs : Array α) (h : 0 < xs.size) : RArray α :=
.ofFn (xs[·]) h

/-- The correctness theorem for `ofFn` -/
theorem RArray.get_ofFn {n : Nat} (f : Fin n → α) (h : 0 < n) (i : Fin n) :
(ofFn f h).get i = f i :=
go 0 n h (Nat.le_refl _) (Nat.zero_le _) i.2
where
go lb ub h1 h2 (h3 : lb ≤ i.val) (h3 : i.val < ub) : (ofFn.go f lb ub h1 h2).get i = f i := by
induction lb, ub, h1, h2 using RArray.ofFn.go.induct (f := f) (n := n)
case case1 =>
simp [ofFn.go, RArray.get_eq_getImpl, RArray.getImpl]
congr
omega
case case2 ih1 ih2 hiu =>
rw [ofFn.go]; simp only [↓reduceDIte, *]
simp [RArray.get_eq_getImpl, RArray.getImpl] at *
split
· rw [ih1] <;> omega
· rw [ih2] <;> omega

@[simp]
theorem RArray.size_ofFn {n : Nat} (f : Fin n → α) (h : 0 < n) :
(ofFn f h).size = n :=
go 0 n h (Nat.le_refl _)
where
go lb ub h1 h2 : (ofFn.go f lb ub h1 h2).size = ub - lb := by
induction lb, ub, h1, h2 using RArray.ofFn.go.induct (f := f) (n := n)
case case1 => simp [ofFn.go, size]; omega
case case2 ih1 ih2 hiu => rw [ofFn.go]; simp [size, *]; omega

section Meta
open Lean

def RArray.toExpr (ty : Expr) (f : α → Expr) : RArray α → Expr
| .leaf x =>
mkApp2 (mkConst ``RArray.leaf) ty (f x)
| .branch p l r =>
mkApp4 (mkConst ``RArray.branch) ty (mkRawNatLit p) (l.toExpr ty f) (r.toExpr ty f)

instance [ToExpr α] : ToExpr (RArray α) where
toTypeExpr := mkApp (mkConst ``RArray) (toTypeExpr α)
toExpr a := a.toExpr (toTypeExpr α) toExpr

end Meta

end Lean
Loading