Skip to content

I²R-Net: Intra- and Inter-Human Relation Network for Multi-Person Pose Estimation

License

Notifications You must be signed in to change notification settings

leijue222/Intra-and-Inter-Human-Relation-Network-for-MPEE

Repository files navigation

I²R-Net: Intra- and Inter-Human Relation Network for Multi-Person Pose Estimation

PWC PWC PWC

teaser

teaser

Model Zoo

Results on CrowdPose testing set

Model Input size AP Ap .5 AP .75 AR AR .5 AR .75 AP easy AP medium AP hard Download Log
I²R-Net (Vanilla version, 1st stage:HRNet-W48-S) 256x192 0.723 0.924 0.779 0.765 0.932 0.819 0.799 0.732 0.628 model log
I²R-Net (1st stage:TransPose-H) 256x192 0.763 0.935 0.822 0.791 0.940 0.844 0.832 0.770 0.674 model log
I²R-Net (1st stage:HRFormer-B) 256x192 0.774 0.936 0.833 0.803 0.945 0.855 0.838 0.781 0.693 model log

Results on OCHuman valiadation set

Model Input size AP Ap .5 AP .75 Download Log
I²R-Net (Vanilla version, 1st stage:HRNet-W48-S) 256x192 0.643 0.850 0.692 model log
I²R-Net (1st stage:TransPose-H) 256x192 0.665 0.838 0.714 model log
I²R-Net (1st stage:HRFormer-B) 256x192 0.678 0.850 0.728 model log

Results on COCO val2017 with detector

Model Input size AP Ap .5 AP .75 AP (M) AP (L) AR AR (M) AR (L) Download Log
I²R-Net (Vanilla version, 1st stage:HRNet-W48-S) 256x192 0.753 0.902 0.819 0.717 0.824 0.805 0.761 0.868 model log
I²R-Net (1st stage:TransPose-H) 256x192 0.758 0.904 0.821 0.720 0.829 0.809 0.766 0.873 model log
I²R-Net (1st stage:HRFormer-B) 256x192 0.764 0.908 0.832 0.723 0.837 0.814 0.769 0.881 model log
I²R-Net (1st stage:HRFormer-B) 384x288 0.773 0.910 0.836 0.730 0.845 0.821 0.777 0.886 model log

Getting started

Installation

  1. Clone this repository, and we'll call the directory that you cloned as ${POSE_ROOT}

    git https://github.com/leijue222/Intra-and-Inter-Human-Relation-Network-for-MPEE.git
  2. Install Python=3.8 and PyTorch=1.10 from the PyTorch official website

  3. Install package dependencies.

    pip install -r requirements.txt
    git clone https://github.com/Jeff-sjtu/CrowdPose.git
    cd CrowdPose/crowdpose-api/PythonAPI/
    sh install.sh
    cd ../../../
    rm -rf CrowdPose
    git clone https://github.com/liruilong940607/OCHumanApi
    cd OCHumanApi
    make install
    cd ..
    rm -rf OCHumanApi
    cd ${POSE_ROOT}/lib
    make

Pretrained Models

Data Preparation

CrowPose dataset

Downloaded images from here, json file can also download from here.

${POSE_ROOT}/data/crowdpose/
|-- json
|   |-- crowdpose_train.json
|   |-- crowdpose_val.json
|   |-- crowdpose_trainval.json
|   `-- crowdpose_test.json
`-- images
	|-- 100000.jpg
	|-- ... 

OCHuman dataset

Downloaded images from here, json file can also download from here.

${POSE_ROOT}/data/crowdpose/
|-- ochuman_coco_format_val_range_0.00_1.00
|-- ochuman_coco_format_test_range_0.00_1.00.json
`-- images
	|-- 000001.jpg
	|-- ... 

COCO dataset

We follow the steps of HRNet to prepare the COCO train/val/test dataset and the annotations. The detected person results are downloaded from OneDrive or GoogleDrive. Please download or link them to ${POSE_ROOT}/data/coco/, and make them look like this:

${POSE_ROOT}/data/coco/
|-- annotations
|   |-- person_keypoints_train2017.json
|   `-- person_keypoints_val2017.json
|-- person_detection_results
|   |-- COCO_val2017_detections_AP_H_56_person.json
|   `-- COCO_test-dev2017_detections_AP_H_609_person.json
`-- images
	|-- train2017
	|   |-- 000000000009.jpg
	|   |-- ... 
	`-- val2017
		|-- 000000000139.jpg
		|-- ... 

Training & Testing

Training sample

torchrun --nproc_per_node=8 tools/ddp_train.py --cfg experiments/crowdpose/interformer_crowdpose_w48_pure_en6.yaml
torchrun --nproc_per_node=8 tools/ddp_train.py --cfg experiments/OCHuman/interformer_ochuman_tph_192_p3_b8.yaml
torchrun --nproc_per_node=8 tools/ddp_train.py --cfg experiments/coco/interformer_coco_hrt_288_p2_b4.yaml

Testing sample

python tools/test.py --cfg experiments/crowdpose/interformer_crowdpose_w48_pure_en6.yaml
python tools/test.py --cfg experiments/OCHuman/interformer_ochuman_tph_192_p3_b8.yaml
python tools/test.py --cfg experiments/coco/interformer_coco_hrt_288_p2_b4.yaml TEST.USE_GT_BBOX False
python tools/test.py --cfg experiments/coco/interformer_coco_hrt_288_p2_b4.yaml TEST.USE_GT_BBOX True

Acknowledgements

Great thanks for these papers and their open-source codes:HRNet, TransPose, HRFormer

Citation

If you use our code or models in your research, please cite with:

@misc{https://doi.org/10.48550/arxiv.2206.10892,
  doi = {10.48550/ARXIV.2206.10892},
  url = {https://arxiv.org/abs/2206.10892},
  author = {Ding, Yiwei and Deng, Wenjin and Zheng, Yinglin and Liu, Pengfei and Wang, Meihong and Cheng, Xuan and Bao, Jianmin and Chen, Dong and Zeng, Ming},
  title = {I^2R-Net: Intra- and Inter-Human Relation Network for Multi-Person Pose Estimation},
  publisher = {arXiv},
  year = {2022},
}

About

I²R-Net: Intra- and Inter-Human Relation Network for Multi-Person Pose Estimation

Topics

Resources

License

Stars

Watchers

Forks

Packages

No packages published