Skip to content

The Purpose of this repository is to create a DeepStream/Triton-Server sample application that utilizes yolov7, yolov7-qat, yolov9 models to perform inference on video files or RTSP streams.

License

Notifications You must be signed in to change notification settings

levipereira/deepstream-yolo-triton-server-rtsp-out

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

8 Commits
 
 
 
 
 
 

Repository files navigation

Sample App Nvidia DeepStream - Triton-Server (YOLO Models)

The Purpose of this repository is to create a DeepStream/Triton-Server sample application that utilizes yolov7, yolov7-qat, yolov9 yolov9-qat models to perform inference on video files or RTSP streams. It then showcases the output on an RTSP URL, providing a straightforward demonstration of end-to-end AI processing.

Follow this steps to Use this Sample App

1. Deploy and Start Triton Server

Follow the steps on below link to Start Triton Server
Triton Server - YOLO.

2. Deploy and Start DeepStream

  1. Start Nvidia Container nvcr.io/nvidia/deepstream:6.4-triton-multiarch
    Install Deepstream Python Bindings ./user_deepstream_python_apps_install.sh --version 1.1.10

  2. Install custom parse lib NvDsInferYolov9EfficientNMS for Gst-nvinferserver
    Clone this repository nvdsinfer_yolo_efficient_nms
    The custom library is built and installed using the provided Makefile.

  3. Install Application for DeepStream 6.4 ds-6.4-ts-yolo-rtsp-out Follow the steps on below link to Build DeepStream
    DeepStream - YOLO

  4. Using Sample Application ds-6.4-ts-yolo-rtsp-out

    To use this sample application, follow the steps below from within the container:

    The sample application is installed on /deepstream_python_apps/apps/ds-6.4-ts-yolo-rtsp-out/

    This sample application supports input streaming from both file:// and rtsp:// sources. It processes the input and streams the output via RTSP at the following URL: rtsp://localhost:8554/ds-test

    python3 ds-6.4-ts-yolo-rtsp-out.py -i <input_files> -m <model> -c <codec> -b <bitrate> [--rtsp-ts]
    
    #example
    python3 ds-6.4-ts-yolo-rtsp-out.py  \
    -i file:///opt/nvidia/deepstream/deepstream/samples/streams/sample_1080p_h264.mp4  \
    -m  yolov9-c \
    -c H264   

    Arguments

    • -i, --input: Path to input file:// or rtsp:// elementary stream. Multiple input files can be provided.
    • -m, --model: Choice ['yolov7','yolov7x','yolov7-qat','yolov7x-qat','yolov9-c','yolov9-e', 'yolov9-c-qat','yolov9-e-qat'].
    • -c, --codec: RTSP Streaming Codec. Choose between H264 and H265. (Default: H264)
    • -b, --bitrate: Set the encoding bitrate. (Default: 4000000)
    • --rtsp-ts: Attach NTP timestamp from RTSP source. (Default: False)

About

The Purpose of this repository is to create a DeepStream/Triton-Server sample application that utilizes yolov7, yolov7-qat, yolov9 models to perform inference on video files or RTSP streams.

Topics

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages