-
Notifications
You must be signed in to change notification settings - Fork 575
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
5 changed files
with
841 additions
and
9 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import traceback | ||
import json | ||
import math | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
|
||
class ResBlock(nn.Module): | ||
def __init__(self,num_channels,scale_init): | ||
super(ResBlock, self).__init__() | ||
kernel_size = 3 | ||
self.biasa = nn.Parameter(torch.zeros(num_channels,1,1)) | ||
self.conva = nn.Conv2d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, padding=1, bias=False) | ||
torch.nn.init.normal_(self.conva.weight,std=math.sqrt(2.0 / num_channels / kernel_size / kernel_size)*scale_init) | ||
self.biasb = nn.Parameter(torch.zeros(num_channels,1,1)) | ||
self.scalb = nn.Parameter(torch.ones(num_channels,1,1)) | ||
self.convb = nn.Conv2d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, padding=1, bias=False) | ||
torch.nn.init.zeros_(self.convb.weight) | ||
|
||
def forward(self, trunk): | ||
x = F.relu(trunk+self.biasa) | ||
x = self.conva(x) | ||
x = F.relu(x*self.scalb+self.biasb) | ||
x = self.convb(x) | ||
return trunk+x | ||
|
||
class GPoolResBlock(nn.Module): | ||
def __init__(self,num_channels,scale_init): | ||
super(GPoolResBlock, self).__init__() | ||
kernel_size = 3 | ||
self.biasa = nn.Parameter(torch.zeros(num_channels,1,1)) | ||
self.conva = nn.Conv2d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, padding=1, bias=False) | ||
torch.nn.init.normal_(self.conva.weight,std=math.sqrt(1.0 / num_channels / kernel_size / kernel_size)*scale_init) | ||
self.convg = nn.Conv2d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, padding=1, bias=False) | ||
torch.nn.init.normal_(self.convg.weight,std=math.sqrt(1.0 / num_channels / kernel_size / kernel_size)*math.sqrt(scale_init)) | ||
self.matg = nn.Parameter(torch.zeros(num_channels,num_channels)) | ||
torch.nn.init.normal_(self.matg,std=math.sqrt(1.0 / num_channels)*math.sqrt(scale_init)) | ||
self.biasb = nn.Parameter(torch.zeros(num_channels,1,1)) | ||
self.scalb = nn.Parameter(torch.ones(num_channels,1,1)) | ||
self.convb = nn.Conv2d(in_channels=num_channels, out_channels=num_channels, kernel_size=kernel_size, padding=1, bias=False) | ||
torch.nn.init.zeros_(self.convb.weight) | ||
|
||
def forward(self, trunk): | ||
x = F.relu(trunk+self.biasa) | ||
x = self.conva(x) | ||
g = self.convg(x) | ||
gsize = g.size() | ||
g = torch.sum(g,(2,3)) / (gsize[2] * gsize[3]) # nchw -> nc | ||
g = torch.matmul(g,self.matg) | ||
g = g.view(gsize[0],gsize[1],1,1) | ||
x = x + g | ||
x = F.relu(x*self.scalb+self.biasb) | ||
x = self.convb(x) | ||
return trunk+x | ||
|
||
|
||
class Model(nn.Module): | ||
def __init__(self, num_channels, num_blocks): | ||
super(Model, self).__init__() | ||
# Channel 0: Next inference point | ||
# Channel 1: On-board | ||
# Channel 2: Black | ||
# Channel 3: White | ||
# Channel 4: Unknown | ||
# Channel 5: Turn number / 100 | ||
# Channel 6: Noise stdev in turn number / 50 | ||
# Channel 7: Source | ||
|
||
self.inference_channel = 0 | ||
self.num_channels = num_channels | ||
self.num_blocks = num_blocks | ||
self.conv0 = nn.Conv2d(in_channels=8, out_channels=self.num_channels, kernel_size=3, padding=1, bias=False) | ||
|
||
self.blocks = nn.ModuleList([]) | ||
self.fixup_scale_init = 1.0 / math.sqrt(self.num_blocks) | ||
self.blocks.append(ResBlock(self.num_channels,self.fixup_scale_init)) | ||
self.blocks.append(ResBlock(self.num_channels,self.fixup_scale_init)) | ||
|
||
next_is_gpool = True | ||
for b in range(num_blocks-2): | ||
if next_is_gpool: | ||
self.blocks.append(GPoolResBlock(self.num_channels,self.fixup_scale_init)) | ||
else: | ||
self.blocks.append(ResBlock(self.num_channels,self.fixup_scale_init)) | ||
next_is_gpool = not next_is_gpool | ||
|
||
assert(len(self.blocks) == self.num_blocks) | ||
|
||
self.endtrunk_bias_focus = nn.Parameter(torch.zeros(self.num_channels,1,1)) | ||
self.endtrunk_bias_g = nn.Parameter(torch.zeros(self.num_channels,1,1)) | ||
self.convg = nn.Conv2d(in_channels=self.num_channels, out_channels=self.num_channels, kernel_size=1, padding=0, bias=False) | ||
|
||
self.fc1 = nn.Linear(self.num_channels*2, self.num_channels) | ||
self.fc2 = nn.Linear(self.num_channels,3) | ||
self.convaux = nn.Conv2d(in_channels=self.num_channels, out_channels=3, kernel_size=1, padding=0, bias=True) | ||
|
||
def forward(self, inputs): | ||
trunk = self.conv0(inputs) | ||
for i in range(self.num_blocks): | ||
trunk = self.blocks[i](trunk) | ||
|
||
head_focus = F.relu(trunk+self.endtrunk_bias_focus) | ||
head_g = F.relu(trunk+self.endtrunk_bias_g) | ||
aux = self.convaux(head_focus) | ||
gsize = head_g.size() | ||
|
||
x = torch.sum(head_focus * inputs[:,self.inference_channel:self.inference_channel+1,:,:],(2,3)) | ||
g = torch.sum(head_g,(2,3)) / (gsize[2] * gsize[3]) # nchw -> nc | ||
|
||
x = torch.cat((x,g),dim=1) | ||
|
||
x = F.relu(self.fc1(x)) | ||
x = self.fc2(x) | ||
return x,aux | ||
|
||
def save_to_file(self, filename): | ||
state_dict = self.state_dict() | ||
data = {} | ||
data["num_channels"] = self.num_channels | ||
data["num_blocks"] = self.num_blocks | ||
data["state_dict"] = state_dict | ||
torch.save(data, filename) | ||
|
||
@staticmethod | ||
def load_from_file(filename): | ||
data = torch.load(filename) | ||
model = Model(data["num_channels"], data["num_blocks"]) | ||
model.load_state_dict(data["state_dict"]) | ||
return model | ||
|
||
|
Oops, something went wrong.