Python library with Neural Networks for Change Detection based on PyTorch.
This project is inspired by segmentation_models.pytorch and built based on it. 😄
Please refer to local_test.py temporarily.
-
Unet [paper]
-
Unet++ [paper]
-
MAnet [paper]
-
Linknet [paper]
-
FPN [paper]
-
PSPNet [paper]
-
PAN [paper]
-
DeepLabV3 [paper]
-
DeepLabV3+ [paper]
-
UPerNet [paper]
-
STANet [paper]
The following is a list of supported encoders in the CDP. Select the appropriate family of encoders and click to expand the table and select a specific encoder and its pre-trained weights (encoder_name
and encoder_weights
parameters).
ResNet
Encoder | Weights | Params, M |
---|---|---|
resnet18 | imagenet / ssl / swsl | 11M |
resnet34 | imagenet | 21M |
resnet50 | imagenet / ssl / swsl | 23M |
resnet101 | imagenet | 42M |
resnet152 | imagenet | 58M |
ResNeXt
Encoder | Weights | Params, M |
---|---|---|
resnext50_32x4d | imagenet / ssl / swsl | 22M |
resnext101_32x4d | ssl / swsl | 42M |
resnext101_32x8d | imagenet / instagram / ssl / swsl | 86M |
resnext101_32x16d | instagram / ssl / swsl | 191M |
resnext101_32x32d | 466M | |
resnext101_32x48d | 826M |
ResNeSt
Encoder | Weights | Params, M |
---|---|---|
timm-resnest14d | imagenet | 8M |
timm-resnest26d | imagenet | 15M |
timm-resnest50d | imagenet | 25M |
timm-resnest101e | imagenet | 46M |
timm-resnest200e | imagenet | 68M |
timm-resnest269e | imagenet | 108M |
timm-resnest50d_4s2x40d | imagenet | 28M |
timm-resnest50d_1s4x24d | imagenet | 23M |
Res2Ne(X)t
Encoder | Weights | Params, M |
---|---|---|
timm-res2net50_26w_4s | imagenet | 23M |
timm-res2net101_26w_4s | imagenet | 43M |
timm-res2net50_26w_6s | imagenet | 35M |
timm-res2net50_26w_8s | imagenet | 46M |
timm-res2net50_48w_2s | imagenet | 23M |
timm-res2net50_14w_8s | imagenet | 23M |
timm-res2next50 | imagenet | 22M |
RegNet(x/y)
Encoder | Weights | Params, M |
---|---|---|
timm-regnetx_002 | imagenet | 2M |
timm-regnetx_004 | imagenet | 4M |
timm-regnetx_006 | imagenet | 5M |
timm-regnetx_008 | imagenet | 6M |
timm-regnetx_016 | imagenet | 8M |
timm-regnetx_032 | imagenet | 14M |
timm-regnetx_040 | imagenet | 20M |
timm-regnetx_064 | imagenet | 24M |
timm-regnetx_080 | imagenet | 37M |
timm-regnetx_120 | imagenet | 43M |
timm-regnetx_160 | imagenet | 52M |
timm-regnetx_320 | imagenet | 105M |
timm-regnety_002 | imagenet | 2M |
timm-regnety_004 | imagenet | 3M |
timm-regnety_006 | imagenet | 5M |
timm-regnety_008 | imagenet | 5M |
timm-regnety_016 | imagenet | 10M |
timm-regnety_032 | imagenet | 17M |
timm-regnety_040 | imagenet | 19M |
timm-regnety_064 | imagenet | 29M |
timm-regnety_080 | imagenet | 37M |
timm-regnety_120 | imagenet | 49M |
timm-regnety_160 | imagenet | 80M |
timm-regnety_320 | imagenet | 141M |
GERNet
Encoder | Weights | Params, M |
---|---|---|
timm-gernet_s | imagenet | 6M |
timm-gernet_m | imagenet | 18M |
timm-gernet_l | imagenet | 28M |
SE-Net
Encoder | Weights | Params, M |
---|---|---|
senet154 | imagenet | 113M |
se_resnet50 | imagenet | 26M |
se_resnet101 | imagenet | 47M |
se_resnet152 | imagenet | 64M |
se_resnext50_32x4d | imagenet | 25M |
se_resnext101_32x4d | imagenet | 46M |
SK-ResNe(X)t
Encoder | Weights | Params, M |
---|---|---|
timm-skresnet18 | imagenet | 11M |
timm-skresnet34 | imagenet | 21M |
timm-skresnext50_32x4d | imagenet | 25M |
DenseNet
Encoder | Weights | Params, M |
---|---|---|
densenet121 | imagenet | 6M |
densenet169 | imagenet | 12M |
densenet201 | imagenet | 18M |
densenet161 | imagenet | 26M |
Inception
Encoder | Weights | Params, M |
---|---|---|
inceptionresnetv2 | imagenet / imagenet+background | 54M |
inceptionv4 | imagenet / imagenet+background | 41M |
xception | imagenet | 22M |
EfficientNet
Encoder | Weights | Params, M |
---|---|---|
efficientnet-b0 | imagenet | 4M |
efficientnet-b1 | imagenet | 6M |
efficientnet-b2 | imagenet | 7M |
efficientnet-b3 | imagenet | 10M |
efficientnet-b4 | imagenet | 17M |
efficientnet-b5 | imagenet | 28M |
efficientnet-b6 | imagenet | 40M |
efficientnet-b7 | imagenet | 63M |
timm-efficientnet-b0 | imagenet / advprop / noisy-student | 4M |
timm-efficientnet-b1 | imagenet / advprop / noisy-student | 6M |
timm-efficientnet-b2 | imagenet / advprop / noisy-student | 7M |
timm-efficientnet-b3 | imagenet / advprop / noisy-student | 10M |
timm-efficientnet-b4 | imagenet / advprop / noisy-student | 17M |
timm-efficientnet-b5 | imagenet / advprop / noisy-student | 28M |
timm-efficientnet-b6 | imagenet / advprop / noisy-student | 40M |
timm-efficientnet-b7 | imagenet / advprop / noisy-student | 63M |
timm-efficientnet-b8 | imagenet / advprop | 84M |
timm-efficientnet-l2 | noisy-student | 474M |
timm-efficientnet-lite0 | imagenet | 4M |
timm-efficientnet-lite1 | imagenet | 5M |
timm-efficientnet-lite2 | imagenet | 6M |
timm-efficientnet-lite3 | imagenet | 8M |
timm-efficientnet-lite4 | imagenet | 13M |
MobileNet
Encoder | Weights | Params, M |
---|---|---|
mobilenet_v2 | imagenet | 2M |
timm-mobilenetv3_large_075 | imagenet | 1.78M |
timm-mobilenetv3_large_100 | imagenet | 2.97M |
timm-mobilenetv3_large_minimal_100 | imagenet | 1.41M |
timm-mobilenetv3_small_075 | imagenet | 0.57M |
timm-mobilenetv3_small_100 | imagenet | 0.93M |
timm-mobilenetv3_small_minimal_100 | imagenet | 0.43M |
DPN
Encoder | Weights | Params, M |
---|---|---|
dpn68 | imagenet | 11M |
dpn68b | imagenet+5k | 11M |
dpn92 | imagenet+5k | 34M |
dpn98 | imagenet | 58M |
dpn107 | imagenet+5k | 84M |
dpn131 | imagenet | 76M |
VGG
Encoder | Weights | Params, M |
---|---|---|
vgg11 | imagenet | 9M |
vgg11_bn | imagenet | 9M |
vgg13 | imagenet | 9M |
vgg13_bn | imagenet | 9M |
vgg16 | imagenet | 14M |
vgg16_bn | imagenet | 14M |
vgg19 | imagenet | 20M |
vgg19_bn | imagenet | 20M |
- LEVIR-CD
- SVCD [google drive | baidu disk (x8gi)]
- ...
change_detection.pytorch
has competitiveness and potential in the change detection competitions.
Here you can find competitions, names of the winners and links to their solutions.
If you find this project useful in your research, please consider cite:
@article{li2023new,
title={A New Learning Paradigm for Foundation Model-based Remote Sensing Change Detection},
author={Li, Kaiyu and Cao, Xiangyong and Meng, Deyu},
journal={arXiv preprint arXiv:2312.01163},
year={2023}
}
@ARTICLE{10129139,
author={Fang, Sheng and Li, Kaiyu and Li, Zhe},
journal={IEEE Transactions on Geoscience and Remote Sensing},
title={Changer: Feature Interaction is What You Need for Change Detection},
year={2023},
volume={61},
number={},
pages={1-11},
doi={10.1109/TGRS.2023.3277496}}
@misc{likyoocdp:2021,
Author = {Kaiyu Li, Fulin Sun, Xudong Liu},
Title = {Change Detection Pytorch},
Year = {2021},
Publisher = {GitHub},
Journal = {GitHub repository},
Howpublished = {\url{https://github.com/likyoo/change_detection.pytorch}}
}
- qubvel/segmentation_models.pytorch
- albumentations-team/albumentations
- open-mmlab/mmsegmentation
- wenhwu/awesome-remote-sensing-change-detection
⚡⚡⚡ I am trying to build this project, if you are interested, don't hesitate to join us!
👯👯👯 Contact me at likyoo@sdust.edu.cn or pull a request directly or join our WeChat group.
若二维码已失效,可以添加微信likyoo7,添加时请备注姓名/昵称 + 单位/学校 + 变化检测