- Add instructions for installing Dependencies
- Add instructions for installing OpenCV and PCL
- Add an explanation of the project structure
- Implement Regiongrowing based on
pcl::RegionGrowing< PointT, NormalT >
See10.1016/j.autcon.
2022.104250` for reference. - Separate read, register, and merge functions to enable working with larger datasets, that don't fit in memory.
- Fix pointer issues. see
- Implement Buffer protocol for
PointCloud
to enable direct access to the data from Python. see
Scanning app: StrayScanner
Speckle; an open data platform for AEC.
Speckle Automate (Video); a CI/CD like flow for triggering custom functions on Speckle data.
Some bench marking:
Number of frames: 2500 -> ( start: 0; step: 4; end: 9996 ) 6.58%
[polyscope] Backend: openGL3_glfw -- Loaded openGL version: 3.3.0 NVIDIA 535.154.05
[============================================================] (2500/2500) 100% - 0s - 48 threads - (Loading data)
Total time: 00:02:10s (Loading data)
[============================================================] (2500/2500) 100% - 0s - 48 threads - (Preprocessing)
Total time: 00:02:06s (Preprocessing)
[============================================================] (2500/2500) 100% - 0s - 1 threads - (Running Inference)
Total time: 00:01:15s (Running Inference)
[============================================================] (2500/2500) 100% - 0s - 48 threads - (Postprocessing)
Total time: 00:00:00s (Postprocessing)
[============================================================] (2500/2500) 100% - 0s - 48 threads - (Computing normals)
Total time: 00:03:33s (Computing normals)
[============================================================] (2500/2500) 100% - 0s - 48 threads - (Saving clouds)
Done
This is a tool for processing scan data captured with an iPhone / iPad in the context of mapping buildings. The goal is to segment and label objects in the point cloud and reconstruct a simplified 3D model on a room-by-room detail scale.
Project structure:
graph TD;
A[Main Library]
B[Python Module]
C[Unit Testing]
D[CLI ?]
A --> B;
A --> C;
A --> D;
Classes Diagram:
classDiagram
Dataset
Dataset : string path
Dataset : size_t n_frames
Dataset : int rgb_width
Dataset : int rgb_hight
Dataset : int depth_width
Dataset : int depth_hight
Dataset : Dataset(path, [Field, ..])
Dataset : operator[](size_t index)
FramData
FramData : get<Field>() -> Field
Dataset --|> FramData : get data per frame
Yolo
Yolo : Yolo(path, bool use_gpu)
Yolo : Detect(Mat img)
Yolo : Preprocess(Mat img) -> Mat
Yolo : Postprocess(vector<Mat> blob, Vec4d params, Mat srcImg) -> vector<OutputParams>
OutputParams
OutputParams : int id
OutputParams : float confidence
OutputParams : Rect box
OutputParams : RotatedRect rotatedBox
OutputParams : Mat boxMask
OutputParams : Rotate(Size size)
OutputParams : Scale(Size size_in, Size size_out)
Yolo --|> OutputParams : Detect
PointCloud
PointCloud : PointCloud()
PointCloud : read(string path) -> PointCloud
PointCloud : write(string path) -> PointCloud
PointT
PointT: float x
PointT: float y
PointT: float z
PointT: float rgb
PointT: float normal_x
PointT: float normal_y
PointT: float normal_z
PointT: float curvature
PointT: int confidence
PointT: int semantic
PointT: int instance
PointT: int label
PointT: getPos () -> pos3
PointT: getColor () -> color3
PointT: getNormal () -> vec3
PointT: operator<< (ostream& os, const PointT& p) -> ostream&
PointCloud --|> PointT
Flow Diagram:
flowchart LR
A[Load Dataset]
B[Yolo Preprocess]
C[Yolo Detect]
D[Yolo Postprocess]
E[Register Frams]
F[Move Frames]
G[Loop closures?]
H[Save Frames]
A-->B;
B-->C;
C-->D;
A-->E;
E-->F;
F-->G;
G-->H;
D-->H;
I[Load Frames]
J[Merge Frames / Downsample]
K[Save Point Cloud]
I-->J;
J-->K;
L[Load Point Cloud]
N[Clustering / Instance Segmentation]
M[Region Growing]
O[Refinement]
P[Cell Complex]
Q[Ray Tracing]
R[Markov Clustering]
S[Polygonal Surface Reconstruction]
T[Save Results]
L-->M;
L-->N;
M-->O;
O-->P;
P-->Q;
Q-->R;
R-->S;
S-->T;
N-->T;
U[Load Results]
V[Speckle]
U-->V;
Clone repository recursively:
git clone --recursive https://github.com/linkarkitektur/linkml_cpp
# --recursive is used to clone submodules in (extern)
Install dependencies: OpenCV and PCL have been compiled from source and are not included but need to be installed separately.
- PCL (Manually compiled with CUDA support)
- OpenCV (Manually compiled with CUDA support)
- CGAL
- Eigen3 (Required by CGAL and Markov Clustering)
- TBB (Threading Building Blocks for GGAL parralelization)
- SCIP (Fallback LIP solver in CGAL)
- Gurobi (Commercial, but free for academic use)
- Embree
- HDF5 (Currently not used, but included in the project)
Generally, it would_ be great to have all dependencies self-contained in the project in the extern folder as submodules.
Open CV needs to be compiled with CUDA support for inference on the GPU.
The branch needs to be 4.x
and commit 0c6fc763f4
has been confirmed to work.
Dependencies:
- CUDA
- cuda-toolkit ([Instructions](https://developer.nvidia.com/cuda-downloads))
- cuDNN (8.9.7) ([Arechive](https://developer.nvidia.com/rdp/cudnn-archive))
*There were probably more dependencies, but I don't remember them. Let's extend the list when we get there*
**Note**: Nvidia's instruction installs the [current](https://developer.nvidia.com/cudnn-downloads) cuDNN version, which is (9.0.0). This does **not** seem compatible with [OpenCV](https://github.com/opencv/opencv/issues/24983). Here are the archives for [cuDNN 8.9.7](https://developer.nvidia.com/rdp/cudnn-archive)
```shell
mkdir opencv && cd opencv
git clone git@github.com:opencv/opencv_contrib.git
got clone git@github.com:opencv/opencv.git
cd opencv
mkdir build && cd build
cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules -D WITH_CUDA=ON ..
make -j48 #Number of cores
sudo make install
# Most of the flags below show be enable by using -D WITH_CUDA=ON
#cmake -D CMAKE_BUILD_TYPE=Release -D CMAKE_INSTALL_PREFIX=/usr/local -D OPENCV_EXTRA_MODULES_PATH=../../opencv_contrib/modules -D WITH_CUDA=ON -D WITH_CUDNN=ON -D CUDA_FAST_MATH=1 -D ENABLE_FAST_MATH=1 -D WITH_GTK=ON -D WITH_TBB=ON -D WITH_FFMPEG=ON -D INSTALL_PYTHON_EXAMPLES=OFF -D OPENCV_DNN_CUDA=ON -D CUDA_GENERATION=Auto -D CUDA_FAST_MATH=ON -D WITH_NVCUVID=OFF -D WITH_NVCUVENC=OFF ..
Maybe we don't need the new version of PCL, but I compiled it from source while looking for some features (CUDA acceleration) that I didn't end up using.
Again, not sure what all the dependencies are, but those are the ones that are listed online.
Dependencies:
- Boost (also required by GCAL)
- Eigen (also required by CGAL)
- Flann
- VTK
- QHull
- OpenNI
- OpenNI2
- CUDA
Official Instructions here.
git clone git@github.com:PointCloudLibrary/pcl.git
cd pcl
mkdir build && cd build
cmake -DCMAKE_BUILD_TYPE=Release ..
# I'm not sure if there were any other flags, but I think I used the defaults.
# Otherwise let's add them here.
from ultralytics import YOLO
model = YOLO('yolov8x-seg.pt')
model.export(format="onnx", simplify=True)
I have found a way in VSCode where I can launch a Python process and attach a debugger to it and then gdb to the C++ process. Alternatively, now that the data loading is also part of the C++ code, we could also just call it a regular CLI application.
launch.json with the Python C++ Debugger pluging.
{
"version": "0.2.0",
"configurations": [
{
"name": "My (gdb) Attach",
"type": "cppdbg",
"request": "attach",
"processId": "",
"setupCommands": [
{
"description": "Enable pretty-printing for gdb",
"text": "-enable-pretty-printing",
"ignoreFailures": false
},
{
"description": "Set Disassembly Flavor to Intel",
"text": "-gdb-set disassembly-flavor intel",
"ignoreFailures": true
}
]
},
]
}
from linkml_py import *
dataset = Dataset("path_to_folder")
parse_dataset(dataset, "./out_put_folder/", step=5)
# Load all the frames into a collection of point clouds.
clouds = PointCloudsOnDisk("./out_put_folder/")
# Annotate the frames, and use the dataset to provide access to the full-resolution images.
clouds.annotate("./yolov8x-seg.onnx", dataset)
# Register the individual frames to eachother
clouds.register()
# Merge and downsample the cloud
cloud = clouds.filter().merge().downsample(0.02)
# Cluster the semantic annotations into instances
cloud.clustering().save("path_for_saving.pcd")
# Create a solid model
cloud.solidify()
# Display the point cloud
cloud..display()