Skip to content

Commit

Permalink
wip
Browse files Browse the repository at this point in the history
  • Loading branch information
ByronHsu committed Sep 6, 2024
1 parent ec63200 commit 0ac6486
Showing 1 changed file with 10 additions and 10 deletions.
20 changes: 10 additions & 10 deletions README.md
Original file line number Diff line number Diff line change
Expand Up @@ -301,17 +301,17 @@ Since Liger Kernel is 100% Triton-based, it works seamlessly with [`torch.compil
We referenced or used the following projects:


| # | Project | Description | Location |
|---|--------------------------------------|---------------------------------------------------------------------|----------|
| 1 | [Unsloth](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43) | `calculate_settings` to determine block size and warp; We reuse it to calculate block size and warp for Norm and MLP | [Liger Kernel Utils](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/utils.py#L23) |
| 2 | [Unsloth](https://github.com/unslothai/unsloth/blob/976d11a10d54383aeb7a692c69e01151a20bfd72/unsloth/kernels/rms_layernorm.py#L48) | We modified and added dW calculation on top of Unsloth implementation | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) |
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) |
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) |
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) |
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation, for example, in RoPE and Cross Entropy. | |
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) |
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) |

| # | Project | Description | Location | License |
|---|----------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|
| 1 | [Unsloth](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/unsloth/kernels/utils.py#L43) | `calculate_settings` to determine block size and warp; We reuse it for Norm and MLP | [Liger Kernel Utils](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/utils.py#L23) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
| 2 | [Unsloth](https://github.com/unslothai/unsloth/blob/976d11a10d54383aeb7a692c69e01151a20bfd72/unsloth/kernels/rms_layernorm.py#L48) | We modified and added dW calculation on top of Unsloth implementation | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [Apache](https://github.com/unslothai/unsloth/blob/fd753fed99ed5f10ef8a9b7139588d9de9ddecfb/LICENSE) |
| 3 | [Triton tutorial](https://triton-lang.org/main/index.html) | We modified on top of triton tutorials | [Liger Kernel RMS Norm](https://github.com/linkedin/Liger-Kernel/blob/e249eee723978bf8610ff1ea2297d048a2417e20/src/liger_kernel/ops/rms_norm.py#L50) | [MIT](https://github.com/triton-lang/triton/blob/main/LICENSE) |
| 4 | [tiny shakespeare dataset](https://huggingface.co/datasets/karpathy/tiny_shakespeare) | We use tiny shakespeare dataset to conduct convergence test on mini model | [Liger Kernel Convergence](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | N/A |
| 5 | [Efficient Cross Entropy](https://github.com/mgmalek/efficient_cross_entropy) | We use the idea of gradient-in-forward and chunking | [Liger Kernel Linear Cross Entropy](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/ops/fused_linear_cross_entropy.py) | [MIT](https://github.com/mgmalek/efficient_cross_entropy/blob/main/LICENSE) |
| 6 | [Flash attn](https://github.com/Dao-AILab/flash-attention) | We take many optimization ideas from the work, such as tiling and recomputation | | [BSD](https://github.com/Dao-AILab/flash-attention/blob/main/LICENSE) |
| 7 | [AutoAWQ](https://github.com/casper-hansen/AutoAWQ) | We reference the design of automodel | [Liger Kernel Auto Model](https://github.com/linkedin/Liger-Kernel/blob/main/src/liger_kernel/transformers/auto_model.py) | [MIT](https://github.com/casper-hansen/AutoAWQ/blob/main/LICENSE) |
| 8 | [llm.c](https://github.com/karpathy/llm.c) | We reference the design of end-to-end testing | [Liger Kernel Convergence Tests](https://github.com/linkedin/Liger-Kernel/tree/main/test/convergence) | [MIT](https://github.com/karpathy/llm.c/blob/master/LICENSE) |

Many thanks to the contributors to these projects for their invaluable work that helped make Liger possible.

Expand Down

0 comments on commit 0ac6486

Please sign in to comment.