Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

Kernels for GroupNorm #353

Merged
merged 23 commits into from
Nov 7, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
114 changes: 114 additions & 0 deletions benchmark/data/all_benchmark_data.csv

Large diffs are not rendered by default.

147 changes: 147 additions & 0 deletions benchmark/scripts/benchmark_group_norm.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,147 @@
import torch
import triton
from utils import (
QUANTILES,
SingleBenchmarkRunInput,
SingleBenchmarkRunOutput,
_test_memory,
parse_benchmark_script_args,
run_benchmarks,
)

from liger_kernel.transformers.group_norm import LigerGroupNorm


def bench_speed_group_norm(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
C = input.x
provider = input.kernel_provider
mode = input.kernel_operation_mode
extra_benchmark_config = input.extra_benchmark_config
M = extra_benchmark_config["M"]
H = extra_benchmark_config["H"]
channels_per_group = extra_benchmark_config["channels_per_group"]
eps = extra_benchmark_config["eps"]
dtype = extra_benchmark_config["dtype"]

x_shape = (M, C, H)
triton_ln = LigerGroupNorm(
num_channels=C, num_groups=C // channels_per_group, eps=eps
).to("cuda")
torch_ln = torch.nn.GroupNorm(
num_groups=C // channels_per_group, num_channels=C, eps=eps
).to("cuda")

x = torch.randn(x_shape, dtype=dtype, device="cuda")
dy = torch.randn_like(x)
x.requires_grad_(True)

def y_fwd():
if provider == "liger":
return triton_ln(x)
if provider == "huggingface":
return torch_ln(x)

if mode == "forward":
ms_50, ms_20, ms_80 = triton.testing.do_bench(
y_fwd, quantiles=QUANTILES, grad_to_none=[x], rep=500
)
elif mode == "backward":
y = y_fwd()
ms_50, ms_20, ms_80 = triton.testing.do_bench(
lambda: y.backward(dy, retain_graph=True),
quantiles=QUANTILES,
grad_to_none=[x],
rep=500,
)
elif mode == "full":

def full():
y = y_fwd()
y.backward(dy, retain_graph=True)

ms_50, ms_20, ms_80 = triton.testing.do_bench(
full, quantiles=QUANTILES, grad_to_none=[x], rep=500
)

return SingleBenchmarkRunOutput(
y_20=ms_20,
y_50=ms_50,
y_80=ms_80,
)


def bench_memory_group_norm(input: SingleBenchmarkRunInput) -> SingleBenchmarkRunOutput:
C = input.x
provider = input.kernel_provider
extra_benchmark_config = input.extra_benchmark_config
M = extra_benchmark_config["M"]
H = extra_benchmark_config["H"]
channels_per_group = extra_benchmark_config["channels_per_group"]
eps = extra_benchmark_config["eps"]
dtype = extra_benchmark_config["dtype"]

x_shape = (M, C, H)
triton_ln = LigerGroupNorm(
num_channels=C, num_groups=C // channels_per_group, eps=eps
).to("cuda")
torch_ln = torch.nn.GroupNorm(
num_groups=C // channels_per_group, num_channels=C, eps=eps
).to("cuda")

x = torch.randn(x_shape, dtype=dtype, device="cuda")
dy = torch.randn_like(x)
x.requires_grad_(True)

def y_fwd():
if provider == "liger":
return triton_ln(x)
if provider == "huggingface":
return torch_ln(x)

def full():
y = y_fwd()
y.backward(dy, retain_graph=True)

mem_50, mem_20, mem_80 = _test_memory(full, quantiles=QUANTILES)
return SingleBenchmarkRunOutput(
y_20=mem_20,
y_50=mem_50,
y_80=mem_80,
)


if __name__ == "__main__":
args = parse_benchmark_script_args()

common_configs = {
"kernel_name": "group_norm",
"x_name": "C",
"x_label": "num_channels",
"x_values": [2**i for i in range(5, 12)],
"kernel_providers": ["liger", "huggingface"],
"extra_benchmark_configs": [
{
"M": 128,
"H": 512,
"channels_per_group": 4,
"dtype": torch.float32,
"eps": 1e-6,
}
],
"overwrite": args.overwrite,
}

run_benchmarks(
bench_test_fn=bench_speed_group_norm,
kernel_operation_modes=["forward", "full", "backward"],
metric_name="speed",
metric_unit="ms",
**common_configs
)
run_benchmarks(
bench_test_fn=bench_memory_group_norm,
kernel_operation_modes=["full", "forward", "backward"],
metric_name="memory",
metric_unit="MB",
**common_configs
)
Loading
Loading