Skip to content

Commit

Permalink
Spark Executor Spill Heuristic - (Depends on Custom SHS - Requires to…
Browse files Browse the repository at this point in the history
…talMemoryBytesSpilled metric) (#310)
  • Loading branch information
skakker authored and akshayrai committed May 21, 2018
1 parent d3fb6ba commit 55a3f2b
Show file tree
Hide file tree
Showing 11 changed files with 313 additions and 5 deletions.
8 changes: 7 additions & 1 deletion app-conf/HeuristicConf.xml
Original file line number Diff line number Diff line change
Expand Up @@ -316,5 +316,11 @@
<classname>com.linkedin.drelephant.spark.heuristics.ExecutorGcHeuristic</classname>
<viewname>views.html.help.spark.helpExecutorGcHeuristic</viewname>
</heuristic>

<heuristic>
<applicationtype>spark</applicationtype>
<heuristicname>Executor spill</heuristicname>
<classname>com.linkedin.drelephant.spark.heuristics.ExecutorStorageSpillHeuristic</classname>
<viewname>views.html.help.spark.helpExecutorStorageSpillHeuristic</viewname>
</heuristic>

</heuristics>
Original file line number Diff line number Diff line change
Expand Up @@ -87,6 +87,7 @@ trait ExecutorSummary{
def totalShuffleWrite: Long
def maxMemory: Long
def totalGCTime: Long
def totalMemoryBytesSpilled: Long
def executorLogs: Map[String, String]}

trait JobData{
Expand Down Expand Up @@ -160,7 +161,7 @@ trait StageData{
def schedulingPool: String

def accumulatorUpdates: Seq[AccumulableInfo]
def tasks: Option[Map[Long, TaskData]]
def tasks: Option[Map[Long, TaskDataImpl]]
def executorSummary: Option[Map[String, ExecutorStageSummary]]}

trait TaskData{
Expand Down Expand Up @@ -293,6 +294,7 @@ class ExecutorSummaryImpl(
var totalShuffleWrite: Long,
var maxMemory: Long,
var totalGCTime: Long,
var totalMemoryBytesSpilled: Long,
var executorLogs: Map[String, String]) extends ExecutorSummary

class JobDataImpl(
Expand Down Expand Up @@ -366,7 +368,7 @@ class StageDataImpl(
var schedulingPool: String,

var accumulatorUpdates: Seq[AccumulableInfoImpl],
var tasks: Option[Map[Long, TaskData]],
var tasks: Option[Map[Long, TaskDataImpl]],
var executorSummary: Option[Map[String, ExecutorStageSummaryImpl]]) extends StageData

class TaskDataImpl(
Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,133 @@
/*
* Copyright 2016 LinkedIn Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/

package com.linkedin.drelephant.spark.heuristics

import com.linkedin.drelephant.analysis.Severity
import com.linkedin.drelephant.spark.fetchers.statusapiv1.{ExecutorStageSummary, ExecutorSummary, StageData}
import com.linkedin.drelephant.analysis._
import com.linkedin.drelephant.configurations.heuristic.HeuristicConfigurationData
import com.linkedin.drelephant.spark.data.SparkApplicationData
import com.linkedin.drelephant.util.MemoryFormatUtils

import scala.collection.JavaConverters


/**
* A heuristic based on memory spilled.
*
*/
class ExecutorStorageSpillHeuristic(private val heuristicConfigurationData: HeuristicConfigurationData)
extends Heuristic[SparkApplicationData] {

import ExecutorStorageSpillHeuristic._
import JavaConverters._

val spillFractionOfExecutorsThreshold: Double =
if(heuristicConfigurationData.getParamMap.get(SPILL_FRACTION_OF_EXECUTORS_THRESHOLD_KEY) == null) DEFAULT_SPILL_FRACTION_OF_EXECUTORS_THRESHOLD
else heuristicConfigurationData.getParamMap.get(SPILL_FRACTION_OF_EXECUTORS_THRESHOLD_KEY).toDouble

val spillMaxMemoryThreshold: Double =
if(heuristicConfigurationData.getParamMap.get(SPILL_MAX_MEMORY_THRESHOLD_KEY) == null) DEFAULT_SPILL_MAX_MEMORY_THRESHOLD
else heuristicConfigurationData.getParamMap.get(SPILL_MAX_MEMORY_THRESHOLD_KEY).toDouble

val sparkExecutorCoresThreshold : Int =
if(heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_CORES_THRESHOLD_KEY) == null) DEFAULT_SPARK_EXECUTOR_CORES_THRESHOLD
else heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_CORES_THRESHOLD_KEY).toInt

val sparkExecutorMemoryThreshold : String =
if(heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_MEMORY_THRESHOLD_KEY) == null) DEFAULT_SPARK_EXECUTOR_MEMORY_THRESHOLD
else heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_MEMORY_THRESHOLD_KEY)

override def getHeuristicConfData(): HeuristicConfigurationData = heuristicConfigurationData

override def apply(data: SparkApplicationData): HeuristicResult = {
val evaluator = new Evaluator(this, data)
var resultDetails = Seq(
new HeuristicResultDetails("Total memory spilled", MemoryFormatUtils.bytesToString(evaluator.totalMemorySpilled)),
new HeuristicResultDetails("Max memory spilled", MemoryFormatUtils.bytesToString(evaluator.maxMemorySpilled)),
new HeuristicResultDetails("Mean memory spilled", MemoryFormatUtils.bytesToString(evaluator.meanMemorySpilled)),
new HeuristicResultDetails("Fraction of executors having non zero bytes spilled", evaluator.fractionOfExecutorsHavingBytesSpilled.toString)
)

if(evaluator.severity != Severity.NONE){
resultDetails :+ new HeuristicResultDetails("Note", "Your execution memory is being spilled. Kindly look into it.")
if(evaluator.sparkExecutorCores >= sparkExecutorCoresThreshold && evaluator.sparkExecutorMemory >= MemoryFormatUtils.stringToBytes(sparkExecutorMemoryThreshold)) {
resultDetails :+ new HeuristicResultDetails("Recommendation", "You can try decreasing the number of cores to reduce the number of concurrently running tasks.")
} else if (evaluator.sparkExecutorMemory <= MemoryFormatUtils.stringToBytes(sparkExecutorMemoryThreshold)) {
resultDetails :+ new HeuristicResultDetails("Recommendation", "You can try increasing the executor memory to reduce spill.")
}
}

val result = new HeuristicResult(
heuristicConfigurationData.getClassName,
heuristicConfigurationData.getHeuristicName,
evaluator.severity,
0,
resultDetails.asJava
)
result
}
}

object ExecutorStorageSpillHeuristic {
val SPARK_EXECUTOR_MEMORY = "spark.executor.memory"
val SPARK_EXECUTOR_CORES = "spark.executor.cores"
val SPILL_FRACTION_OF_EXECUTORS_THRESHOLD_KEY = "spill_fraction_of_executors_threshold"
val SPILL_MAX_MEMORY_THRESHOLD_KEY = "spill_max_memory_threshold"
val SPARK_EXECUTOR_CORES_THRESHOLD_KEY = "spark_executor_cores_threshold"
val SPARK_EXECUTOR_MEMORY_THRESHOLD_KEY = "spark_executor_memory_threshold"
val DEFAULT_SPILL_FRACTION_OF_EXECUTORS_THRESHOLD : Double = 0.2
val DEFAULT_SPILL_MAX_MEMORY_THRESHOLD : Double = 0.05
val DEFAULT_SPARK_EXECUTOR_CORES_THRESHOLD : Int = 4
val DEFAULT_SPARK_EXECUTOR_MEMORY_THRESHOLD : String ="10GB"

class Evaluator(executorStorageSpillHeuristic: ExecutorStorageSpillHeuristic, data: SparkApplicationData) {
lazy val executorSummaries: Seq[ExecutorSummary] = data.executorSummaries
lazy val appConfigurationProperties: Map[String, String] =
data.appConfigurationProperties
val maxMemorySpilled: Long = executorSummaries.map(_.totalMemoryBytesSpilled).max
val meanMemorySpilled = executorSummaries.map(_.totalMemoryBytesSpilled).sum / executorSummaries.size
val totalMemorySpilled = executorSummaries.map(_.totalMemoryBytesSpilled).sum
val fractionOfExecutorsHavingBytesSpilled: Double = executorSummaries.count(_.totalMemoryBytesSpilled > 0).toDouble / executorSummaries.size.toDouble
val severity: Severity = {
if (fractionOfExecutorsHavingBytesSpilled != 0) {
if (fractionOfExecutorsHavingBytesSpilled < executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold
&& maxMemorySpilled < executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) {
Severity.LOW
}
else if (fractionOfExecutorsHavingBytesSpilled < executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold
&& meanMemorySpilled < executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) {
Severity.MODERATE
}

else if (fractionOfExecutorsHavingBytesSpilled >= executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold
&& meanMemorySpilled < executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) {
Severity.SEVERE
}
else if (fractionOfExecutorsHavingBytesSpilled >= executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold
&& meanMemorySpilled >= executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) {
Severity.CRITICAL
} else Severity.NONE
}
else Severity.NONE
}

lazy val sparkExecutorMemory: Long = (appConfigurationProperties.get(SPARK_EXECUTOR_MEMORY).map(MemoryFormatUtils.stringToBytes)).getOrElse(0)
lazy val sparkExecutorCores: Int = (appConfigurationProperties.get(SPARK_EXECUTOR_CORES).map(_.toInt)).getOrElse(0)
}
}

Original file line number Diff line number Diff line change
Expand Up @@ -174,6 +174,7 @@ object LegacyDataConverters {
executorInfo.shuffleWrite,
executorInfo.maxMem,
executorInfo.totalGCTime,
executorInfo.totalMemoryBytesSpilled,
executorLogs = Map.empty
)
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -44,14 +44,15 @@ public static class ExecutorInfo {
public long outputBytes = 0L;
public long shuffleRead = 0L;
public long totalGCTime = 0L;
public long totalMemoryBytesSpilled = 0L;
public long shuffleWrite = 0L;

public String toString() {
return "{execId: " + execId + ", hostPort:" + hostPort + " , rddBlocks: " + rddBlocks + ", memUsed: " + memUsed
+ ", maxMem: " + maxMem + ", diskUsed: " + diskUsed + ", totalTasks" + totalTasks + ", tasksActive: "
+ activeTasks + ", tasksComplete: " + completedTasks + ", tasksFailed: " + failedTasks + ", duration: "
+ duration + ", inputBytes: " + inputBytes + ", outputBytes:" + outputBytes + ", shuffleRead: " + shuffleRead
+ ", shuffleWrite: " + shuffleWrite + ", totalGCTime: " + totalGCTime + "}";
+ ", shuffleWrite: " + shuffleWrite + ", totalGCTime: " + totalGCTime + ", totalMemoryBytesSpilled: " + totalMemoryBytesSpilled + "}";
}
}

Expand Down
3 changes: 3 additions & 0 deletions app/com/linkedin/drelephant/util/MemoryFormatUtils.java
Original file line number Diff line number Diff line change
Expand Up @@ -94,6 +94,9 @@ public static long stringToBytes(String formattedString) {
return 0L;
}

//handling if the string has , for eg. 1,000MB
formattedString = formattedString.replace(",", "");

Matcher matcher = REGEX_MATCHER.matcher(formattedString);
if (!matcher.matches()) {
throw new IllegalArgumentException(
Expand Down
23 changes: 23 additions & 0 deletions app/views/help/spark/helpExecutorStorageSpillHeuristic.scala.html
Original file line number Diff line number Diff line change
@@ -0,0 +1,23 @@
@*
* Copyright 2016 LinkedIn Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*@
<p>Spark performs best when data is kept in memory. Spilled execution memory is tracked by memoryBytesSpilled, which is available executor level. If execution memory is being spilled, then the warnings are as follows:</p>
<p>Low: memoryBytesSpilled is non-zero for 1 or more executors, greater than zero for < 20% of executors, and max size is < .05 * <i>spark.executor.memory</i>.</p>
<p>Moderate: memoryBytesSpilled is non-zero for 1 or more executors, greater than zero for < 20% of executors, and avg size is < .05 * <i>spark.executor.memory</i>.</p>
<p>Severe: memoryBytes Spilled is greater than zero for > 20% of executors and avg size is < .05 * <i>spark.executor.memory</i>.</p>
<p>Critical: memoryBytes Spilled is greater than zero for > 20% of executors and/or avg size is >= .05 * <i>spark.executor.memory</i>.</p>
<h3>Suggestions</h3>
<p>If number of cores (spark.executor.cores) is more than 4 and executor memory is > 10GB : Try decreasing the number of cores which would decrese the number of tasks running in parallel, hence decreasing the number of bytes spilled.</p>
<p>You can also try increasing the <i>spark.executor.memory</i> which will reduce memory spilled.</p>
Original file line number Diff line number Diff line change
Expand Up @@ -195,6 +195,7 @@ object SparkMetricsAggregatorTest {
totalShuffleWrite = 0,
maxMemory = 0,
totalGCTime = 0,
totalMemoryBytesSpilled = 0,
executorLogs = Map.empty
)
}
Original file line number Diff line number Diff line change
Expand Up @@ -117,8 +117,9 @@ object ExecutorGcHeuristicTest {
totalInputBytes=0,
totalShuffleRead=0,
totalShuffleWrite= 0,
maxMemory= 0,
maxMemory = 0,
totalGCTime,
totalMemoryBytesSpilled = 0,
executorLogs = Map.empty
)

Expand Down
Original file line number Diff line number Diff line change
@@ -0,0 +1,136 @@
/*
* Copyright 2016 LinkedIn Corp.
*
* Licensed under the Apache License, Version 2.0 (the "License"); you may not
* use this file except in compliance with the License. You may obtain a copy of
* the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the
* License for the specific language governing permissions and limitations under
* the License.
*/

package com.linkedin.drelephant.spark.heuristics

import scala.collection.JavaConverters
import com.linkedin.drelephant.analysis.{ApplicationType, Severity, SeverityThresholds}
import com.linkedin.drelephant.configurations.heuristic.HeuristicConfigurationData
import com.linkedin.drelephant.spark.data.{SparkApplicationData, SparkLogDerivedData, SparkRestDerivedData}
import com.linkedin.drelephant.spark.fetchers.statusapiv1.{ApplicationInfoImpl, ExecutorSummaryImpl, StageDataImpl}
import org.apache.spark.scheduler.SparkListenerEnvironmentUpdate
import org.scalatest.{FunSpec, Matchers}


class ExecutorStorageSpillHeuristicTest extends FunSpec with Matchers {
import ExecutorStorageSpillHeuristicTest._

describe("ExecutorStorageSpillHeuristic") {
val heuristicConfigurationData = newFakeHeuristicConfigurationData(
Map.empty
)
val executorStorageSpillHeuristic = new ExecutorStorageSpillHeuristic(heuristicConfigurationData)

val appConfigurationProperties = Map("spark.executor.memory" -> "4g", "spark.executor.cores"->"4", "spark.executor.instances"->"4")

val executorSummaries = Seq(
newFakeExecutorSummary(
id = "1",
totalMemoryBytesSpilled = 200000L
),
newFakeExecutorSummary(
id = "2",
totalMemoryBytesSpilled = 100000L
),
newFakeExecutorSummary(
id = "3",
totalMemoryBytesSpilled = 300000L
),
newFakeExecutorSummary(
id = "4",
totalMemoryBytesSpilled = 200000L
)
)

describe(".apply") {
val data1 = newFakeSparkApplicationData(executorSummaries, appConfigurationProperties)
val heuristicResult = executorStorageSpillHeuristic.apply(data1)
val heuristicResultDetails = heuristicResult.getHeuristicResultDetails

it("returns the severity") {
heuristicResult.getSeverity should be(Severity.SEVERE)
}

it("returns the total memory spilled") {
val details = heuristicResultDetails.get(0)
details.getName should include("Total memory spilled")
details.getValue should be("781.25 KB")
}

it("returns the max memory spilled") {
val details = heuristicResultDetails.get(1)
details.getName should include("Max memory spilled")
details.getValue should be("292.97 KB")
}

it("returns the mean memory spilled") {
val details = heuristicResultDetails.get(2)
details.getName should include("Mean memory spilled")
details.getValue should be("195.31 KB")
}
}
}
}

object ExecutorStorageSpillHeuristicTest {
import JavaConverters._

def newFakeHeuristicConfigurationData(params: Map[String, String] = Map.empty): HeuristicConfigurationData =
new HeuristicConfigurationData("heuristic", "class", "view", new ApplicationType("type"), params.asJava)

def newFakeExecutorSummary(
id: String,
totalMemoryBytesSpilled: Long
): ExecutorSummaryImpl = new ExecutorSummaryImpl(
id,
hostPort = "",
rddBlocks = 0,
memoryUsed=0,
diskUsed = 0,
activeTasks = 0,
failedTasks = 0,
completedTasks = 0,
totalTasks = 0,
totalDuration=0,
totalInputBytes=0,
totalShuffleRead=0,
totalShuffleWrite= 0,
maxMemory= 0,
totalGCTime = 0,
totalMemoryBytesSpilled,
executorLogs = Map.empty
)

def newFakeSparkApplicationData(
executorSummaries: Seq[ExecutorSummaryImpl],
appConfigurationProperties: Map[String, String]
): SparkApplicationData = {
val appId = "application_1"

val restDerivedData = SparkRestDerivedData(
new ApplicationInfoImpl(appId, name = "app", Seq.empty),
jobDatas = Seq.empty,
stageDatas = Seq.empty,
executorSummaries = executorSummaries
)

val logDerivedData = SparkLogDerivedData(
SparkListenerEnvironmentUpdate(Map("Spark Properties" -> appConfigurationProperties.toSeq))
)

SparkApplicationData(appId, restDerivedData, Some(logDerivedData))
}
}
Loading

0 comments on commit 55a3f2b

Please sign in to comment.