-
Notifications
You must be signed in to change notification settings - Fork 856
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Spark Executor Spill Heuristic - (Depends on Custom SHS - Requires to…
…talMemoryBytesSpilled metric) (#310)
- Loading branch information
Showing
11 changed files
with
313 additions
and
5 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
133 changes: 133 additions & 0 deletions
133
app/com/linkedin/drelephant/spark/heuristics/ExecutorStorageSpillHeuristic.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
/* | ||
* Copyright 2016 LinkedIn Corp. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); you may not | ||
* use this file except in compliance with the License. You may obtain a copy of | ||
* the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | ||
* License for the specific language governing permissions and limitations under | ||
* the License. | ||
*/ | ||
|
||
package com.linkedin.drelephant.spark.heuristics | ||
|
||
import com.linkedin.drelephant.analysis.Severity | ||
import com.linkedin.drelephant.spark.fetchers.statusapiv1.{ExecutorStageSummary, ExecutorSummary, StageData} | ||
import com.linkedin.drelephant.analysis._ | ||
import com.linkedin.drelephant.configurations.heuristic.HeuristicConfigurationData | ||
import com.linkedin.drelephant.spark.data.SparkApplicationData | ||
import com.linkedin.drelephant.util.MemoryFormatUtils | ||
|
||
import scala.collection.JavaConverters | ||
|
||
|
||
/** | ||
* A heuristic based on memory spilled. | ||
* | ||
*/ | ||
class ExecutorStorageSpillHeuristic(private val heuristicConfigurationData: HeuristicConfigurationData) | ||
extends Heuristic[SparkApplicationData] { | ||
|
||
import ExecutorStorageSpillHeuristic._ | ||
import JavaConverters._ | ||
|
||
val spillFractionOfExecutorsThreshold: Double = | ||
if(heuristicConfigurationData.getParamMap.get(SPILL_FRACTION_OF_EXECUTORS_THRESHOLD_KEY) == null) DEFAULT_SPILL_FRACTION_OF_EXECUTORS_THRESHOLD | ||
else heuristicConfigurationData.getParamMap.get(SPILL_FRACTION_OF_EXECUTORS_THRESHOLD_KEY).toDouble | ||
|
||
val spillMaxMemoryThreshold: Double = | ||
if(heuristicConfigurationData.getParamMap.get(SPILL_MAX_MEMORY_THRESHOLD_KEY) == null) DEFAULT_SPILL_MAX_MEMORY_THRESHOLD | ||
else heuristicConfigurationData.getParamMap.get(SPILL_MAX_MEMORY_THRESHOLD_KEY).toDouble | ||
|
||
val sparkExecutorCoresThreshold : Int = | ||
if(heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_CORES_THRESHOLD_KEY) == null) DEFAULT_SPARK_EXECUTOR_CORES_THRESHOLD | ||
else heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_CORES_THRESHOLD_KEY).toInt | ||
|
||
val sparkExecutorMemoryThreshold : String = | ||
if(heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_MEMORY_THRESHOLD_KEY) == null) DEFAULT_SPARK_EXECUTOR_MEMORY_THRESHOLD | ||
else heuristicConfigurationData.getParamMap.get(SPARK_EXECUTOR_MEMORY_THRESHOLD_KEY) | ||
|
||
override def getHeuristicConfData(): HeuristicConfigurationData = heuristicConfigurationData | ||
|
||
override def apply(data: SparkApplicationData): HeuristicResult = { | ||
val evaluator = new Evaluator(this, data) | ||
var resultDetails = Seq( | ||
new HeuristicResultDetails("Total memory spilled", MemoryFormatUtils.bytesToString(evaluator.totalMemorySpilled)), | ||
new HeuristicResultDetails("Max memory spilled", MemoryFormatUtils.bytesToString(evaluator.maxMemorySpilled)), | ||
new HeuristicResultDetails("Mean memory spilled", MemoryFormatUtils.bytesToString(evaluator.meanMemorySpilled)), | ||
new HeuristicResultDetails("Fraction of executors having non zero bytes spilled", evaluator.fractionOfExecutorsHavingBytesSpilled.toString) | ||
) | ||
|
||
if(evaluator.severity != Severity.NONE){ | ||
resultDetails :+ new HeuristicResultDetails("Note", "Your execution memory is being spilled. Kindly look into it.") | ||
if(evaluator.sparkExecutorCores >= sparkExecutorCoresThreshold && evaluator.sparkExecutorMemory >= MemoryFormatUtils.stringToBytes(sparkExecutorMemoryThreshold)) { | ||
resultDetails :+ new HeuristicResultDetails("Recommendation", "You can try decreasing the number of cores to reduce the number of concurrently running tasks.") | ||
} else if (evaluator.sparkExecutorMemory <= MemoryFormatUtils.stringToBytes(sparkExecutorMemoryThreshold)) { | ||
resultDetails :+ new HeuristicResultDetails("Recommendation", "You can try increasing the executor memory to reduce spill.") | ||
} | ||
} | ||
|
||
val result = new HeuristicResult( | ||
heuristicConfigurationData.getClassName, | ||
heuristicConfigurationData.getHeuristicName, | ||
evaluator.severity, | ||
0, | ||
resultDetails.asJava | ||
) | ||
result | ||
} | ||
} | ||
|
||
object ExecutorStorageSpillHeuristic { | ||
val SPARK_EXECUTOR_MEMORY = "spark.executor.memory" | ||
val SPARK_EXECUTOR_CORES = "spark.executor.cores" | ||
val SPILL_FRACTION_OF_EXECUTORS_THRESHOLD_KEY = "spill_fraction_of_executors_threshold" | ||
val SPILL_MAX_MEMORY_THRESHOLD_KEY = "spill_max_memory_threshold" | ||
val SPARK_EXECUTOR_CORES_THRESHOLD_KEY = "spark_executor_cores_threshold" | ||
val SPARK_EXECUTOR_MEMORY_THRESHOLD_KEY = "spark_executor_memory_threshold" | ||
val DEFAULT_SPILL_FRACTION_OF_EXECUTORS_THRESHOLD : Double = 0.2 | ||
val DEFAULT_SPILL_MAX_MEMORY_THRESHOLD : Double = 0.05 | ||
val DEFAULT_SPARK_EXECUTOR_CORES_THRESHOLD : Int = 4 | ||
val DEFAULT_SPARK_EXECUTOR_MEMORY_THRESHOLD : String ="10GB" | ||
|
||
class Evaluator(executorStorageSpillHeuristic: ExecutorStorageSpillHeuristic, data: SparkApplicationData) { | ||
lazy val executorSummaries: Seq[ExecutorSummary] = data.executorSummaries | ||
lazy val appConfigurationProperties: Map[String, String] = | ||
data.appConfigurationProperties | ||
val maxMemorySpilled: Long = executorSummaries.map(_.totalMemoryBytesSpilled).max | ||
val meanMemorySpilled = executorSummaries.map(_.totalMemoryBytesSpilled).sum / executorSummaries.size | ||
val totalMemorySpilled = executorSummaries.map(_.totalMemoryBytesSpilled).sum | ||
val fractionOfExecutorsHavingBytesSpilled: Double = executorSummaries.count(_.totalMemoryBytesSpilled > 0).toDouble / executorSummaries.size.toDouble | ||
val severity: Severity = { | ||
if (fractionOfExecutorsHavingBytesSpilled != 0) { | ||
if (fractionOfExecutorsHavingBytesSpilled < executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold | ||
&& maxMemorySpilled < executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) { | ||
Severity.LOW | ||
} | ||
else if (fractionOfExecutorsHavingBytesSpilled < executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold | ||
&& meanMemorySpilled < executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) { | ||
Severity.MODERATE | ||
} | ||
|
||
else if (fractionOfExecutorsHavingBytesSpilled >= executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold | ||
&& meanMemorySpilled < executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) { | ||
Severity.SEVERE | ||
} | ||
else if (fractionOfExecutorsHavingBytesSpilled >= executorStorageSpillHeuristic.spillFractionOfExecutorsThreshold | ||
&& meanMemorySpilled >= executorStorageSpillHeuristic.spillMaxMemoryThreshold * sparkExecutorMemory) { | ||
Severity.CRITICAL | ||
} else Severity.NONE | ||
} | ||
else Severity.NONE | ||
} | ||
|
||
lazy val sparkExecutorMemory: Long = (appConfigurationProperties.get(SPARK_EXECUTOR_MEMORY).map(MemoryFormatUtils.stringToBytes)).getOrElse(0) | ||
lazy val sparkExecutorCores: Int = (appConfigurationProperties.get(SPARK_EXECUTOR_CORES).map(_.toInt)).getOrElse(0) | ||
} | ||
} | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
23 changes: 23 additions & 0 deletions
23
app/views/help/spark/helpExecutorStorageSpillHeuristic.scala.html
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,23 @@ | ||
@* | ||
* Copyright 2016 LinkedIn Corp. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); you may not | ||
* use this file except in compliance with the License. You may obtain a copy of | ||
* the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | ||
* License for the specific language governing permissions and limitations under | ||
* the License. | ||
*@ | ||
<p>Spark performs best when data is kept in memory. Spilled execution memory is tracked by memoryBytesSpilled, which is available executor level. If execution memory is being spilled, then the warnings are as follows:</p> | ||
<p>Low: memoryBytesSpilled is non-zero for 1 or more executors, greater than zero for < 20% of executors, and max size is < .05 * <i>spark.executor.memory</i>.</p> | ||
<p>Moderate: memoryBytesSpilled is non-zero for 1 or more executors, greater than zero for < 20% of executors, and avg size is < .05 * <i>spark.executor.memory</i>.</p> | ||
<p>Severe: memoryBytes Spilled is greater than zero for > 20% of executors and avg size is < .05 * <i>spark.executor.memory</i>.</p> | ||
<p>Critical: memoryBytes Spilled is greater than zero for > 20% of executors and/or avg size is >= .05 * <i>spark.executor.memory</i>.</p> | ||
<h3>Suggestions</h3> | ||
<p>If number of cores (spark.executor.cores) is more than 4 and executor memory is > 10GB : Try decreasing the number of cores which would decrese the number of tasks running in parallel, hence decreasing the number of bytes spilled.</p> | ||
<p>You can also try increasing the <i>spark.executor.memory</i> which will reduce memory spilled.</p> |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
136 changes: 136 additions & 0 deletions
136
test/com/linkedin/drelephant/spark/heuristics/ExecutorStorageSpillHeuristicTest.scala
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,136 @@ | ||
/* | ||
* Copyright 2016 LinkedIn Corp. | ||
* | ||
* Licensed under the Apache License, Version 2.0 (the "License"); you may not | ||
* use this file except in compliance with the License. You may obtain a copy of | ||
* the License at | ||
* | ||
* http://www.apache.org/licenses/LICENSE-2.0 | ||
* | ||
* Unless required by applicable law or agreed to in writing, software | ||
* distributed under the License is distributed on an "AS IS" BASIS, WITHOUT | ||
* WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. See the | ||
* License for the specific language governing permissions and limitations under | ||
* the License. | ||
*/ | ||
|
||
package com.linkedin.drelephant.spark.heuristics | ||
|
||
import scala.collection.JavaConverters | ||
import com.linkedin.drelephant.analysis.{ApplicationType, Severity, SeverityThresholds} | ||
import com.linkedin.drelephant.configurations.heuristic.HeuristicConfigurationData | ||
import com.linkedin.drelephant.spark.data.{SparkApplicationData, SparkLogDerivedData, SparkRestDerivedData} | ||
import com.linkedin.drelephant.spark.fetchers.statusapiv1.{ApplicationInfoImpl, ExecutorSummaryImpl, StageDataImpl} | ||
import org.apache.spark.scheduler.SparkListenerEnvironmentUpdate | ||
import org.scalatest.{FunSpec, Matchers} | ||
|
||
|
||
class ExecutorStorageSpillHeuristicTest extends FunSpec with Matchers { | ||
import ExecutorStorageSpillHeuristicTest._ | ||
|
||
describe("ExecutorStorageSpillHeuristic") { | ||
val heuristicConfigurationData = newFakeHeuristicConfigurationData( | ||
Map.empty | ||
) | ||
val executorStorageSpillHeuristic = new ExecutorStorageSpillHeuristic(heuristicConfigurationData) | ||
|
||
val appConfigurationProperties = Map("spark.executor.memory" -> "4g", "spark.executor.cores"->"4", "spark.executor.instances"->"4") | ||
|
||
val executorSummaries = Seq( | ||
newFakeExecutorSummary( | ||
id = "1", | ||
totalMemoryBytesSpilled = 200000L | ||
), | ||
newFakeExecutorSummary( | ||
id = "2", | ||
totalMemoryBytesSpilled = 100000L | ||
), | ||
newFakeExecutorSummary( | ||
id = "3", | ||
totalMemoryBytesSpilled = 300000L | ||
), | ||
newFakeExecutorSummary( | ||
id = "4", | ||
totalMemoryBytesSpilled = 200000L | ||
) | ||
) | ||
|
||
describe(".apply") { | ||
val data1 = newFakeSparkApplicationData(executorSummaries, appConfigurationProperties) | ||
val heuristicResult = executorStorageSpillHeuristic.apply(data1) | ||
val heuristicResultDetails = heuristicResult.getHeuristicResultDetails | ||
|
||
it("returns the severity") { | ||
heuristicResult.getSeverity should be(Severity.SEVERE) | ||
} | ||
|
||
it("returns the total memory spilled") { | ||
val details = heuristicResultDetails.get(0) | ||
details.getName should include("Total memory spilled") | ||
details.getValue should be("781.25 KB") | ||
} | ||
|
||
it("returns the max memory spilled") { | ||
val details = heuristicResultDetails.get(1) | ||
details.getName should include("Max memory spilled") | ||
details.getValue should be("292.97 KB") | ||
} | ||
|
||
it("returns the mean memory spilled") { | ||
val details = heuristicResultDetails.get(2) | ||
details.getName should include("Mean memory spilled") | ||
details.getValue should be("195.31 KB") | ||
} | ||
} | ||
} | ||
} | ||
|
||
object ExecutorStorageSpillHeuristicTest { | ||
import JavaConverters._ | ||
|
||
def newFakeHeuristicConfigurationData(params: Map[String, String] = Map.empty): HeuristicConfigurationData = | ||
new HeuristicConfigurationData("heuristic", "class", "view", new ApplicationType("type"), params.asJava) | ||
|
||
def newFakeExecutorSummary( | ||
id: String, | ||
totalMemoryBytesSpilled: Long | ||
): ExecutorSummaryImpl = new ExecutorSummaryImpl( | ||
id, | ||
hostPort = "", | ||
rddBlocks = 0, | ||
memoryUsed=0, | ||
diskUsed = 0, | ||
activeTasks = 0, | ||
failedTasks = 0, | ||
completedTasks = 0, | ||
totalTasks = 0, | ||
totalDuration=0, | ||
totalInputBytes=0, | ||
totalShuffleRead=0, | ||
totalShuffleWrite= 0, | ||
maxMemory= 0, | ||
totalGCTime = 0, | ||
totalMemoryBytesSpilled, | ||
executorLogs = Map.empty | ||
) | ||
|
||
def newFakeSparkApplicationData( | ||
executorSummaries: Seq[ExecutorSummaryImpl], | ||
appConfigurationProperties: Map[String, String] | ||
): SparkApplicationData = { | ||
val appId = "application_1" | ||
|
||
val restDerivedData = SparkRestDerivedData( | ||
new ApplicationInfoImpl(appId, name = "app", Seq.empty), | ||
jobDatas = Seq.empty, | ||
stageDatas = Seq.empty, | ||
executorSummaries = executorSummaries | ||
) | ||
|
||
val logDerivedData = SparkLogDerivedData( | ||
SparkListenerEnvironmentUpdate(Map("Spark Properties" -> appConfigurationProperties.toSeq)) | ||
) | ||
|
||
SparkApplicationData(appId, restDerivedData, Some(logDerivedData)) | ||
} | ||
} |
Oops, something went wrong.