Dataset and code for the paper Rapid Wildfire Hotspot Detection Using Self-Supervised Learning On Temporal Remote Sensing Data (IGARSS 2024).
https://arxiv.org/abs/2405.20093v1
Note
Dataset available at hf.co/datasets/links-ads/multi-temporal-hotspot-dataset.
First, create a python environment. Here we used python 3.9
and torch 1.9
, with CUDA 11.1
.
We suggest creating a python environment, using venv
or conda
first.
pip install -r requirements.txt -f https://download.pytorch.org/whl/torch_stable.html
You can launch a training with the following commands:
$ CUDA_VISIBLE_DEVICES=... python src/train.py --catalog_file_train=... --catalog_file_val=.... --catalog_file_test=... <..args>
You can specify the following args:
- batch_size
- max_epochs
- lr
- gpus
- log_dir
- seed
- optimizer
- scheduler
- compute_loss_lc (False if not specified)
- positive_weight_loss_class (default 1)
- lc_loss_weight (default 2)
- mask_strategies (use "random_timesteps")
- mask_ratio (default 0.75)
To produce inference maps, run something like the following:
$ CUDA_VISIBLE_DEVICES=... python src/test.py --model_checkpoint <args>
@misc{barco2024rapid,
title={Rapid Wildfire Hotspot Detection Using Self-Supervised Learning on Temporal Remote Sensing Data},
author={Luca Barco and Angelica Urbanelli and Claudio Rossi},
year={2024},
eprint={2405.20093},
archivePrefix={arXiv},
primaryClass={cs.CV}
}