Skip to content

livioivil/flipscores

Repository files navigation

Dev-version of the flipscores package

On CRAN version


Set up

To install this github version type (in R):

##if devtools is not installed yet: 
## install.packages("devtools") 
library(devtools)
install_github("livioivil/flipscores")

References

J Hemerik, JJ Goeman and L Finos (2019) Robust testing in generalized linear models by sign-flipping score contributions. Journal of the Royal Statistical Society Series B: Statistical Methodology, Volume 82, Issue 3, July 2020, Pages 841–864.
https://doi.org/10.1111/rssb.12369

R De Santis, J Goeman, J Hemerik, L Finos (2022) Inference in generalized linear models with robustness to misspecified variances arXiv: 2209.13918.
https://arxiv.org/abs/2209.13918

Some examples

library(flipscores)
set.seed(1)
dt=data.frame(X=rnorm(20),
   Z=factor(rep(LETTERS[1:3],length.out=20)))
dt$Y=rpois(n=20,lambda=exp(dt$X))
mod=flipscores(Y~Z+X,data=dt,family="poisson",x=TRUE)
summary(mod)
#> 
#> Call:
#> flipscores(formula = Y ~ Z + X, family = "poisson", data = dt, 
#>     x = TRUE)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -1.6910  -0.5792   0.1012   0.4900   1.0440  
#> 
#> Coefficients:
#>             Estimate   Score Std. Error z value Part. Cor Pr(>|z|)   
#> (Intercept)  -0.1026 -0.7229     2.7127 -0.2665    -0.088   0.7460   
#> ZB           -0.1501 -0.7125     2.1789 -0.3270    -0.104   0.6564   
#> ZC            0.1633  0.8106     2.2232  0.3646     0.117   0.6924   
#> X             0.9439 16.2062     4.7272  3.4283     0.671   0.0098 **
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for poisson family taken to be 1)
#> 
#>     Null deviance: 27.135  on 19  degrees of freedom
#> Residual deviance: 12.888  on 16  degrees of freedom
#> AIC: 57.459
#> 
#> Number of Fisher Scoring iterations: 5

# Anova test
anova(mod)
#> Analysis of Deviance Table (Type III test)
#> 
#> Model: poisson, link: log
#> 
#> Inference is provided by FlipScores approach (5000 sign flips).
#> 
#> Model: Y ~ Z + X
#>   Df   Score Pr(>Score)   
#> Z  2 0.77184     0.6984   
#> X  1 0.02977     0.0098 **
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# or
mod0=flipscores(Y~Z,data=dt,family="poisson",x=TRUE)
anova(mod0,mod)
#> Analysis of Deviance Table (Type III test)
#> 
#> Model: poisson, link: log
#> 
#> Inference is provided by FlipScores approach (5000 sign flips).
#> 
#> Model 1: Y ~ Z
#> Model 2: Y ~ Z + X
#>                    Df    Score Pr(>Score)  
#> Model 2 vs Model 1  1 0.029586     0.0108 *
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
# and
mod0=flipscores(Y~X,data=dt,family="poisson")
anova(mod0,mod)
#> Analysis of Deviance Table (Type III test)
#> 
#> Model: poisson, link: log
#> 
#> Inference is provided by FlipScores approach (5000 sign flips).
#> 
#> Model 1: Y ~ X
#> Model 2: Y ~ Z + X
#>                    Df  Score Pr(>Score)
#> Model 2 vs Model 1  2 1.4245     0.5244

Negative Binomial

set.seed(1)
D=data.frame(x=(1:40)/20, z=rnorm(40))
D$y=rnbinom(40,mu=exp(D$x),size=3)

library(MASS)
mod_par=glm.nb(y~x+z,data=D, link="log")
summary(mod_par)
#> 
#> Call:
#> glm.nb(formula = y ~ x + z, data = D, link = "log", init.theta = 7.972747099)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -2.0746  -0.7748  -0.1086   0.4617   2.0435  
#> 
#> Coefficients:
#>             Estimate Std. Error z value Pr(>|z|)    
#> (Intercept) -0.15365    0.29358  -0.523    0.601    
#> x            0.92089    0.21481   4.287 1.81e-05 ***
#> z           -0.01282    0.13606  -0.094    0.925    
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for Negative Binomial(7.9727) family taken to be 1)
#> 
#>     Null deviance: 61.217  on 39  degrees of freedom
#> Residual deviance: 41.312  on 37  degrees of freedom
#> AIC: 154.29
#> 
#> Number of Fisher Scoring iterations: 1
#> 
#> 
#>               Theta:  7.97 
#>           Std. Err.:  6.95 
#> 
#>  2 x log-likelihood:  -146.286
mod=flipscores(y~x+z, data=D, family = "negbinom") 
summary(mod)
#> 
#> Call:
#> flipscores(formula = y ~ x + z, family = "negbinom", data = D)
#> 
#> Deviance Residuals: 
#>     Min       1Q   Median       3Q      Max  
#> -2.0746  -0.7748  -0.1086   0.4617   2.0435  
#> 
#> Coefficients:
#>             Estimate    Score Std. Error  z value Part. Cor Pr(>|t|)   
#> (Intercept) -0.15365 -1.84162    3.42399 -0.53786    -0.087   0.5808   
#> x            0.92089 14.93128    4.42610  3.37346     0.547   0.0014 **
#> z           -0.01282 -0.72457    7.24491 -0.10001    -0.016   0.9612   
#> ---
#> Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
#> 
#> (Dispersion parameter for Negative Binomial(7.9727) family taken to be 0.9960228)
#> 
#>     Null deviance: 61.217  on 39  degrees of freedom
#> Residual deviance: 41.312  on 37  degrees of freedom
#> AIC: 154.29
#> 
#> Number of Fisher Scoring iterations: 1

Bug reports

If you encounter a bug, please file a reprex (minimal reproducible example) on github.

About

dev-version of flipscores

Resources

Stars

Watchers

Forks

Packages

No packages published

Contributors 4

  •  
  •  
  •  
  •  

Languages