-
Notifications
You must be signed in to change notification settings - Fork 12.7k
New issue
Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.
By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.
Already on GitHub? Sign in to your account
Switch member calls to isa/dyn_cast/cast/...
to free function calls.
#89356
Conversation
This change cleans up call sites. Next step is to mark the member functions deprecated. See https://mlir.llvm.org/deprecation and https://discourse.llvm.org/t/preferred-casting-style-going-forward.
@llvm/pr-subscribers-flang-openmp @llvm/pr-subscribers-mlir-tensor Author: Christian Sigg (chsigg) ChangesThis change cleans up call sites. Next step is to mark the member functions deprecated. See https://mlir.llvm.org/deprecation and https://discourse.llvm.org/t/preferred-casting-style-going-forward. Patch is 108.29 KiB, truncated to 20.00 KiB below, full version: https://github.com/llvm/llvm-project/pull/89356.diff 80 Files Affected:
diff --git a/mlir/examples/transform/Ch4/lib/MyExtension.cpp b/mlir/examples/transform/Ch4/lib/MyExtension.cpp
index 26e348f2a30ec6..83e2dcd750bb39 100644
--- a/mlir/examples/transform/Ch4/lib/MyExtension.cpp
+++ b/mlir/examples/transform/Ch4/lib/MyExtension.cpp
@@ -142,7 +142,7 @@ mlir::transform::HasOperandSatisfyingOp::apply(
transform::detail::prepareValueMappings(
yieldedMappings, getBody().front().getTerminator()->getOperands(),
state);
- results.setParams(getPosition().cast<OpResult>(),
+ results.setParams(cast<OpResult>(getPosition()),
{rewriter.getI32IntegerAttr(operand.getOperandNumber())});
for (auto &&[result, mapping] : llvm::zip(getResults(), yieldedMappings))
results.setMappedValues(result, mapping);
diff --git a/mlir/include/mlir/Dialect/Mesh/Interfaces/ShardingInterfaceImpl.h b/mlir/include/mlir/Dialect/Mesh/Interfaces/ShardingInterfaceImpl.h
index ab4df2ab028d43..5e4b4f3a66af9d 100644
--- a/mlir/include/mlir/Dialect/Mesh/Interfaces/ShardingInterfaceImpl.h
+++ b/mlir/include/mlir/Dialect/Mesh/Interfaces/ShardingInterfaceImpl.h
@@ -87,7 +87,7 @@ struct IndependentParallelIteratorDomainShardingInterface
void
populateIteratorTypes(Type t,
SmallVector<utils::IteratorType> &iterTypes) const {
- RankedTensorType rankedTensorType = t.dyn_cast<RankedTensorType>();
+ RankedTensorType rankedTensorType = dyn_cast<RankedTensorType>(t);
if (!rankedTensorType) {
return;
}
@@ -106,7 +106,7 @@ struct ElementwiseShardingInterface
ElementwiseShardingInterface<ElemwiseOp>, ElemwiseOp> {
SmallVector<utils::IteratorType> getLoopIteratorTypes(Operation *op) const {
Value val = op->getOperand(0);
- auto type = val.getType().dyn_cast<RankedTensorType>();
+ auto type = dyn_cast<RankedTensorType>(val.getType());
if (!type)
return {};
SmallVector<utils::IteratorType> types(type.getRank(),
@@ -117,7 +117,7 @@ struct ElementwiseShardingInterface
SmallVector<AffineMap> getIndexingMaps(Operation *op) const {
MLIRContext *ctx = op->getContext();
Value val = op->getOperand(0);
- auto type = val.getType().dyn_cast<RankedTensorType>();
+ auto type = dyn_cast<RankedTensorType>(val.getType());
if (!type)
return {};
int64_t rank = type.getRank();
diff --git a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
index a9bc3351f4cff0..ec3c2cb011c357 100644
--- a/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
+++ b/mlir/include/mlir/Dialect/Tosa/IR/TosaOps.h
@@ -60,11 +60,11 @@ class MulOperandsAndResultElementType
if (llvm::isa<FloatType>(resElemType))
return impl::verifySameOperandsAndResultElementType(op);
- if (auto resIntType = resElemType.dyn_cast<IntegerType>()) {
+ if (auto resIntType = dyn_cast<IntegerType>(resElemType)) {
IntegerType lhsIntType =
- getElementTypeOrSelf(op->getOperand(0)).cast<IntegerType>();
+ cast<IntegerType>(getElementTypeOrSelf(op->getOperand(0)));
IntegerType rhsIntType =
- getElementTypeOrSelf(op->getOperand(1)).cast<IntegerType>();
+ cast<IntegerType>(getElementTypeOrSelf(op->getOperand(1)));
if (lhsIntType != rhsIntType)
return op->emitOpError(
"requires the same element type for all operands");
diff --git a/mlir/include/mlir/IR/Location.h b/mlir/include/mlir/IR/Location.h
index d4268e804f4f7a..aa8314f38cdfac 100644
--- a/mlir/include/mlir/IR/Location.h
+++ b/mlir/include/mlir/IR/Location.h
@@ -154,7 +154,7 @@ class FusedLocWith : public FusedLoc {
/// Support llvm style casting.
static bool classof(Attribute attr) {
auto fusedLoc = llvm::dyn_cast<FusedLoc>(attr);
- return fusedLoc && fusedLoc.getMetadata().isa_and_nonnull<MetadataT>();
+ return fusedLoc && mlir::isa_and_nonnull<MetadataT>(fusedLoc.getMetadata());
}
};
diff --git a/mlir/lib/CAPI/Dialect/LLVM.cpp b/mlir/lib/CAPI/Dialect/LLVM.cpp
index 4669c40f843d94..21c66f38a8af03 100644
--- a/mlir/lib/CAPI/Dialect/LLVM.cpp
+++ b/mlir/lib/CAPI/Dialect/LLVM.cpp
@@ -135,7 +135,7 @@ MlirAttribute mlirLLVMDIExpressionAttrGet(MlirContext ctx, intptr_t nOperations,
unwrap(ctx),
llvm::map_to_vector(
unwrapList(nOperations, operations, attrStorage),
- [](Attribute a) { return a.cast<DIExpressionElemAttr>(); })));
+ [](Attribute a) { return cast<DIExpressionElemAttr>(a); })));
}
MlirAttribute mlirLLVMDINullTypeAttrGet(MlirContext ctx) {
@@ -165,7 +165,7 @@ MlirAttribute mlirLLVMDICompositeTypeAttrGet(
cast<DIScopeAttr>(unwrap(scope)), cast<DITypeAttr>(unwrap(baseType)),
DIFlags(flags), sizeInBits, alignInBits,
llvm::map_to_vector(unwrapList(nElements, elements, elementsStorage),
- [](Attribute a) { return a.cast<DINodeAttr>(); })));
+ [](Attribute a) { return cast<DINodeAttr>(a); })));
}
MlirAttribute
@@ -259,7 +259,7 @@ MlirAttribute mlirLLVMDISubroutineTypeAttrGet(MlirContext ctx,
return wrap(DISubroutineTypeAttr::get(
unwrap(ctx), callingConvention,
llvm::map_to_vector(unwrapList(nTypes, types, attrStorage),
- [](Attribute a) { return a.cast<DITypeAttr>(); })));
+ [](Attribute a) { return cast<DITypeAttr>(a); })));
}
MlirAttribute mlirLLVMDISubprogramAttrGet(
diff --git a/mlir/lib/CAPI/IR/BuiltinTypes.cpp b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
index e1a5d82587cf9e..c94c070144a7e9 100644
--- a/mlir/lib/CAPI/IR/BuiltinTypes.cpp
+++ b/mlir/lib/CAPI/IR/BuiltinTypes.cpp
@@ -311,11 +311,11 @@ MlirType mlirVectorTypeGetScalableChecked(MlirLocation loc, intptr_t rank,
}
bool mlirVectorTypeIsScalable(MlirType type) {
- return unwrap(type).cast<VectorType>().isScalable();
+ return cast<VectorType>(unwrap(type)).isScalable();
}
bool mlirVectorTypeIsDimScalable(MlirType type, intptr_t dim) {
- return unwrap(type).cast<VectorType>().getScalableDims()[dim];
+ return cast<VectorType>(unwrap(type)).getScalableDims()[dim];
}
//===----------------------------------------------------------------------===//
diff --git a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
index 7e073bae75c0c9..033e66c6118f30 100644
--- a/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
+++ b/mlir/lib/Conversion/AMDGPUToROCDL/AMDGPUToROCDL.cpp
@@ -371,7 +371,7 @@ static void wmmaPushInputOperand(ConversionPatternRewriter &rewriter,
bool isUnsigned, Value llvmInput,
SmallVector<Value, 4> &operands) {
Type inputType = llvmInput.getType();
- auto vectorType = inputType.dyn_cast<VectorType>();
+ auto vectorType = dyn_cast<VectorType>(inputType);
Type elemType = vectorType.getElementType();
if (elemType.isBF16())
@@ -414,7 +414,7 @@ static void wmmaPushOutputOperand(ConversionPatternRewriter &rewriter,
Value output, int32_t subwordOffset,
bool clamp, SmallVector<Value, 4> &operands) {
Type inputType = output.getType();
- auto vectorType = inputType.dyn_cast<VectorType>();
+ auto vectorType = dyn_cast<VectorType>(inputType);
Type elemType = vectorType.getElementType();
if (elemType.isBF16())
output = rewriter.create<LLVM::BitcastOp>(
@@ -569,9 +569,8 @@ static std::optional<StringRef> mfmaOpToIntrinsic(MFMAOp mfma,
/// on the architecture you are compiling for.
static std::optional<StringRef> wmmaOpToIntrinsic(WMMAOp wmma,
Chipset chipset) {
-
- auto sourceVectorType = wmma.getSourceA().getType().dyn_cast<VectorType>();
- auto destVectorType = wmma.getDestC().getType().dyn_cast<VectorType>();
+ auto sourceVectorType = dyn_cast<VectorType>(wmma.getSourceA().getType());
+ auto destVectorType = dyn_cast<VectorType>(wmma.getDestC().getType());
auto elemSourceType = sourceVectorType.getElementType();
auto elemDestType = destVectorType.getElementType();
@@ -727,7 +726,7 @@ LogicalResult ExtPackedFp8OpLowering::matchAndRewrite(
Type f32 = getTypeConverter()->convertType(op.getResult().getType());
Value source = adaptor.getSource();
- auto sourceVecType = op.getSource().getType().dyn_cast<VectorType>();
+ auto sourceVecType = dyn_cast<VectorType>(op.getSource().getType());
Type sourceElemType = getElementTypeOrSelf(op.getSource());
// Extend to a v4i8
if (!sourceVecType || sourceVecType.getNumElements() < 4) {
diff --git a/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp b/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
index 0113a3df0b8e3d..3d3ff001c541b5 100644
--- a/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
+++ b/mlir/lib/Conversion/ArithToAMDGPU/ArithToAMDGPU.cpp
@@ -65,7 +65,7 @@ static Value castF32To(Type elementType, Value f32, Location loc,
LogicalResult ExtFOnFloat8RewritePattern::match(arith::ExtFOp op) const {
Type inType = op.getIn().getType();
- if (auto inVecType = inType.dyn_cast<VectorType>()) {
+ if (auto inVecType = dyn_cast<VectorType>(inType)) {
if (inVecType.isScalable())
return failure();
if (inVecType.getShape().size() > 1)
@@ -81,13 +81,13 @@ void ExtFOnFloat8RewritePattern::rewrite(arith::ExtFOp op,
Location loc = op.getLoc();
Value in = op.getIn();
Type outElemType = getElementTypeOrSelf(op.getOut().getType());
- if (!in.getType().isa<VectorType>()) {
+ if (!isa<VectorType>(in.getType())) {
Value asFloat = rewriter.create<amdgpu::ExtPackedFp8Op>(
loc, rewriter.getF32Type(), in, 0);
Value result = castF32To(outElemType, asFloat, loc, rewriter);
return rewriter.replaceOp(op, result);
}
- VectorType inType = in.getType().cast<VectorType>();
+ VectorType inType = cast<VectorType>(in.getType());
int64_t numElements = inType.getNumElements();
Value zero = rewriter.create<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
@@ -179,7 +179,7 @@ LogicalResult TruncFToFloat8RewritePattern::match(arith::TruncFOp op) const {
if (op.getRoundingmodeAttr())
return failure();
Type outType = op.getOut().getType();
- if (auto outVecType = outType.dyn_cast<VectorType>()) {
+ if (auto outVecType = dyn_cast<VectorType>(outType)) {
if (outVecType.isScalable())
return failure();
if (outVecType.getShape().size() > 1)
@@ -202,7 +202,7 @@ void TruncFToFloat8RewritePattern::rewrite(arith::TruncFOp op,
if (saturateFP8)
in = clampInput(rewriter, loc, outElemType, in);
VectorType truncResType = VectorType::get(4, outElemType);
- if (!in.getType().isa<VectorType>()) {
+ if (!isa<VectorType>(in.getType())) {
Value asFloat = castToF32(in, loc, rewriter);
Value asF8s = rewriter.create<amdgpu::PackedTrunc2xFp8Op>(
loc, truncResType, asFloat, /*sourceB=*/nullptr, 0,
@@ -210,7 +210,7 @@ void TruncFToFloat8RewritePattern::rewrite(arith::TruncFOp op,
Value result = rewriter.create<vector::ExtractOp>(loc, asF8s, 0);
return rewriter.replaceOp(op, result);
}
- VectorType outType = op.getOut().getType().cast<VectorType>();
+ VectorType outType = cast<VectorType>(op.getOut().getType());
int64_t numElements = outType.getNumElements();
Value zero = rewriter.create<arith::ConstantOp>(
loc, outElemType, rewriter.getFloatAttr(outElemType, 0.0));
diff --git a/mlir/lib/Conversion/GPUCommon/GPUOpsLowering.cpp b/mlir/lib/Conversion/GPUCommon/GPUOpsLowering.cpp
index 993c09b03c0fde..36e10372e4bc5b 100644
--- a/mlir/lib/Conversion/GPUCommon/GPUOpsLowering.cpp
+++ b/mlir/lib/Conversion/GPUCommon/GPUOpsLowering.cpp
@@ -214,7 +214,7 @@ GPUFuncOpLowering::matchAndRewrite(gpu::GPUFuncOp gpuFuncOp, OpAdaptor adaptor,
llvm::enumerate(gpuFuncOp.getArgumentTypes())) {
auto remapping = signatureConversion.getInputMapping(idx);
NamedAttrList argAttr =
- argAttrs ? argAttrs[idx].cast<DictionaryAttr>() : NamedAttrList();
+ argAttrs ? cast<DictionaryAttr>(argAttrs[idx]) : NamedAttrList();
auto copyAttribute = [&](StringRef attrName) {
Attribute attr = argAttr.erase(attrName);
if (!attr)
@@ -234,9 +234,8 @@ GPUFuncOpLowering::matchAndRewrite(gpu::GPUFuncOp gpuFuncOp, OpAdaptor adaptor,
return;
}
for (size_t i = 0, e = remapping->size; i < e; ++i) {
- if (llvmFuncOp.getArgument(remapping->inputNo + i)
- .getType()
- .isa<LLVM::LLVMPointerType>()) {
+ if (isa<LLVM::LLVMPointerType>(
+ llvmFuncOp.getArgument(remapping->inputNo + i).getType())) {
llvmFuncOp.setArgAttr(remapping->inputNo + i, attrName, attr);
}
}
diff --git a/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp b/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
index 78d4e806246872..3a4fc7d8063f40 100644
--- a/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
+++ b/mlir/lib/Conversion/GPUCommon/GPUToLLVMConversion.cpp
@@ -668,7 +668,7 @@ static int32_t getCuSparseLtDataTypeFrom(Type type) {
static int32_t getCuSparseDataTypeFrom(Type type) {
if (llvm::isa<ComplexType>(type)) {
// get the element type
- auto elementType = type.cast<ComplexType>().getElementType();
+ auto elementType = cast<ComplexType>(type).getElementType();
if (elementType.isBF16())
return 15; // CUDA_C_16BF
if (elementType.isF16())
diff --git a/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp b/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
index 9b5d19ebd783a9..11d29754aa760e 100644
--- a/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
+++ b/mlir/lib/Conversion/NVGPUToNVVM/NVGPUToNVVM.cpp
@@ -1579,7 +1579,7 @@ struct NVGPUWarpgroupMmaStoreOpLowering
if (offset)
ti = makeAdd(ti, makeConst(offset));
- auto structType = matrixD.getType().cast<LLVM::LLVMStructType>();
+ auto structType = cast<LLVM::LLVMStructType>(matrixD.getType());
// Number of 32-bit registers owns per thread
constexpr unsigned numAdjacentRegisters = 2;
@@ -1606,9 +1606,9 @@ struct NVGPUWarpgroupMmaStoreOpLowering
int offset = 0;
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
Value matriDValue = adaptor.getMatrixD();
- auto stype = matriDValue.getType().cast<LLVM::LLVMStructType>();
+ auto stype = cast<LLVM::LLVMStructType>(matriDValue.getType());
for (auto [idx, matrixD] : llvm::enumerate(stype.getBody())) {
- auto structType = matrixD.cast<LLVM::LLVMStructType>();
+ auto structType = cast<LLVM::LLVMStructType>(matrixD);
Value innerStructValue = b.create<LLVM::ExtractValueOp>(matriDValue, idx);
storeFragmentedMatrix(b, innerStructValue, op.getDstMemref(), offset);
offset += structType.getBody().size();
@@ -1626,13 +1626,9 @@ struct NVGPUWarpgroupMmaInitAccumulatorOpLowering
matchAndRewrite(nvgpu::WarpgroupMmaInitAccumulatorOp op, OpAdaptor adaptor,
ConversionPatternRewriter &rewriter) const override {
ImplicitLocOpBuilder b(op->getLoc(), rewriter);
- LLVM::LLVMStructType packStructType =
- getTypeConverter()
- ->convertType(op.getMatrixC().getType())
- .cast<LLVM::LLVMStructType>();
- Type elemType = packStructType.getBody()
- .front()
- .cast<LLVM::LLVMStructType>()
+ LLVM::LLVMStructType packStructType = cast<LLVM::LLVMStructType>(
+ getTypeConverter()->convertType(op.getMatrixC().getType()));
+ Type elemType = cast<LLVM::LLVMStructType>(packStructType.getBody().front())
.getBody()
.front();
Value zero = b.create<LLVM::ConstantOp>(elemType, b.getZeroAttr(elemType));
@@ -1640,7 +1636,7 @@ struct NVGPUWarpgroupMmaInitAccumulatorOpLowering
SmallVector<Value> innerStructs;
// Unpack the structs and set all values to zero
for (auto [idx, s] : llvm::enumerate(packStructType.getBody())) {
- auto structType = s.cast<LLVM::LLVMStructType>();
+ auto structType = cast<LLVM::LLVMStructType>(s);
Value structValue = b.create<LLVM::ExtractValueOp>(packStruct, idx);
for (unsigned i = 0; i < structType.getBody().size(); ++i) {
structValue = b.create<LLVM::InsertValueOp>(
diff --git a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
index ef8d59c9b26082..b6b85cab5a3821 100644
--- a/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
+++ b/mlir/lib/Conversion/TosaToLinalg/TosaToLinalg.cpp
@@ -618,7 +618,7 @@ static Value expandRank(PatternRewriter &rewriter, Location loc, Value tensor,
static SmallVector<Value> expandInputRanks(PatternRewriter &rewriter,
Location loc, Operation *operation) {
auto rank =
- operation->getResultTypes().front().cast<RankedTensorType>().getRank();
+ cast<RankedTensorType>(operation->getResultTypes().front()).getRank();
return llvm::map_to_vector(operation->getOperands(), [&](Value operand) {
return expandRank(rewriter, loc, operand, rank);
});
@@ -680,7 +680,7 @@ computeTargetSize(PatternRewriter &rewriter, Location loc, IndexPool &indexPool,
// dimension, that is the target size. An occurrence of an additional static
// dimension greater than 1 with a different value is undefined behavior.
for (auto operand : operands) {
- auto size = operand.getType().cast<RankedTensorType>().getDimSize(dim);
+ auto size = cast<RankedTensorType>(operand.getType()).getDimSize(dim);
if (!ShapedType::isDynamic(size) && size > 1)
return {rewriter.getIndexAttr(size), operand};
}
@@ -688,7 +688,7 @@ computeTargetSize(PatternRewriter &rewriter, Location loc, IndexPool &indexPool,
// Filter operands with dynamic dimension
auto operandsWithDynamicDim =
llvm::to_vector(llvm::make_filter_range(operands, [&](Value operand) {
- return operand.getType().cast<RankedTensorType>().isDynamicDim(dim);
+ return cast<RankedTensorType>(operand.getType()).isDynamicDim(dim);
}));
// If no operand has a dynamic dimension, it means all sizes were 1
@@ -718,7 +718,7 @@ static std::pair<SmallVector<OpFoldResult>, SmallVector<Value>>
computeTargetShape(PatternRewriter &rewriter, Location loc,
IndexPool &indexPool, ValueRange operands) {
assert(!operands.empty());
- auto rank = operands.front().getType().cast<RankedTensorType>().getRank();
+ auto rank = cast<RankedTensorType>(operands.front().getType()).getRank();
SmallVector<OpFoldResult> targetShape;
SmallVector<Value> masterOperands;
for (auto dim : llvm::seq<int64_t>(0, rank)) {
@@ -735,7 +735,7 @@ static Value broadcastDynamicDimension(PatternRewriter &rewriter, Location loc,
int64_t dim, OpFoldResult targetSize,
Value masterOperand) {
// Nothing to do if this is a static dimension
- auto rankedTensorType = operand.getType().cast<RankedTensorType>();
+ auto rankedTensorType = cast<RankedTensorType>(operand.getType());
if (!rankedTensorType.isDynamicDim(dim))
return operand;
@@ -817,7 +817,7 @@ static Value broadcastDynamicDimensions(PatternRewriter &rewriter, Location loc,
IndexPool &indexPool, Value operand,
ArrayRef<OpFoldResult> targetShape,
ArrayRef<Value> masterOperands) {
- int64_t rank = operand.getType().cast<RankedTensorType>().getRank();
+ int64_t rank = cast<RankedTensorType>(operand.getType()).getRank();
assert((int64_t)targetShape.size() == rank);
assert((int64_t)masterOperands.size() == rank);
for (auto index : llvm::seq<int64_t>(0, rank))
@@ -848,8 +848,7 @@ emitElementwiseComputation(PatternRewriter &rewriter, Location loc,
Operation *operation, ValueRange operands,
ArrayRef<OpFoldResult> targetShape) {
// Generate output tensor
- auto resultType =
- operation->getResultTypes().front().cast<RankedTensorType>();
+ auto resultType = cast<RankedTensorType>(operation->getResultTypes().front());
Value outputTensor = rewriter.create<tensor::EmptyOp>(
loc, targetShape, resultType.getElementType());
@@ -2274,8 ...
[truncated]
|
✅ With the latest revision this PR passed the C/C++ code formatter. |
There was a problem hiding this comment.
Choose a reason for hiding this comment
The reason will be displayed to describe this comment to others. Learn more.
Thanks for the cleanup. LGTM assuming that the usages of mlir::
and llvm::
are only done in places where both namespaces have a corresponding using
directive.
The change was auto-generated to change Attribute, Location, Type, and Value member function calls to free function calls without explicit The |
llvm#89356) This change cleans up call sites. Next step is to mark the member functions deprecated. See https://mlir.llvm.org/deprecation and https://discourse.llvm.org/t/preferred-casting-style-going-forward.
…free function calls. (llvm#89356) This change cleans up call sites. Next step is to mark the member functions deprecated. See https://mlir.llvm.org/deprecation and https://discourse.llvm.org/t/preferred-casting-style-going-forward.
This change cleans up call sites. Next step is to mark the member functions deprecated.
See https://mlir.llvm.org/deprecation and https://discourse.llvm.org/t/preferred-casting-style-going-forward.