Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[InstCombine] lshr (mul (X, 2^N + 1)), N -> add (X, lshr(X, N)) #92907

Merged
merged 2 commits into from
May 26, 2024
Merged
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
50 changes: 43 additions & 7 deletions llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1457,13 +1457,24 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {

const APInt *MulC;
if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
// Look for a "splat" mul pattern - it replicates bits across each half of
// a value, so a right shift is just a mask of the low bits:
// lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
// TODO: Generalize to allow more than just half-width shifts?
if (BitWidth > 2 && ShAmtC * 2 == BitWidth && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC)
return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));
if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC) {
// Look for a "splat" mul pattern - it replicates bits across each half
// of a value, so a right shift is just a mask of the low bits:
// lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
if (ShAmtC * 2 == BitWidth)
return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));

// lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
if (Op0->hasOneUse()) {
auto *NewAdd = BinaryOperator::CreateNUWAdd(
X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
I.isExact()));
NewAdd->setHasNoSignedWrap(
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
return NewAdd;
}
}

// The one-use check is not strictly necessary, but codegen may not be
// able to invert the transform and perf may suffer with an extra mul
Expand All @@ -1483,6 +1494,16 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
}
}

// lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC) {
return BinaryOperator::CreateNSWAdd(
X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
I.isExact()));
}
}

// Try to narrow bswap.
// In the case where the shift amount equals the bitwidth difference, the
// shift is eliminated.
Expand Down Expand Up @@ -1686,6 +1707,21 @@ Instruction *InstCombinerImpl::visitAShr(BinaryOperator &I) {
if (match(Op0, m_OneUse(m_NSWSub(m_Value(X), m_Value(Y)))))
return new SExtInst(Builder.CreateICmpSLT(X, Y), Ty);
}

const APInt *MulC;
if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC)))) &&
(BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmt &&
(ShAmt < BitWidth - 1))) /* Minus 1 for the sign bit */ {

// ashr (mul nsw (X, 2^N + 1)), N -> add nsw (X, ashr(X, N))
auto *NewAdd = BinaryOperator::CreateNSWAdd(
X,
Builder.CreateAShr(X, ConstantInt::get(Ty, ShAmt), "", I.isExact()));
NewAdd->setHasNoUnsignedWrap(
cast<OverflowingBinaryOperator>(Op0)->hasNoUnsignedWrap());
nikic marked this conversation as resolved.
Show resolved Hide resolved
return NewAdd;
}
}

const SimplifyQuery Q = SQ.getWithInstruction(&I);
Expand Down
259 changes: 259 additions & 0 deletions llvm/test/Transforms/InstCombine/ashr-lshr.ll
Original file line number Diff line number Diff line change
Expand Up @@ -604,3 +604,262 @@ define <2 x i8> @ashr_known_pos_exact_vec(<2 x i8> %x, <2 x i8> %y) {
%r = ashr exact <2 x i8> %p, %y
ret <2 x i8> %r
}

define i32 @lshr_mul_times_3_div_2(i32 %0) {
; CHECK-LABEL: @lshr_mul_times_3_div_2(
; CHECK-NEXT: [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 1
; CHECK-NEXT: [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul nsw nuw i32 %0, 3
%lshr = lshr i32 %mul, 1
ret i32 %lshr
}

define i32 @lshr_mul_times_3_div_2_exact(i32 %x) {
; CHECK-LABEL: @lshr_mul_times_3_div_2_exact(
; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
; CHECK-NEXT: [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul nsw i32 %x, 3
%lshr = lshr exact i32 %mul, 1
ret i32 %lshr
}

; Negative test

define i32 @lshr_mul_times_3_div_2_no_flags(i32 %0) {
; CHECK-LABEL: @lshr_mul_times_3_div_2_no_flags(
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[MUL]], 1
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul i32 %0, 3
%lshr = lshr i32 %mul, 1
ret i32 %lshr
}

; Negative test

define i32 @mul_times_3_div_2_multiuse_lshr(i32 %x) {
; CHECK-LABEL: @mul_times_3_div_2_multiuse_lshr(
; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 3
; CHECK-NEXT: [[RES:%.*]] = lshr i32 [[MUL]], 1
; CHECK-NEXT: call void @use(i32 [[MUL]])
; CHECK-NEXT: ret i32 [[RES]]
;
%mul = mul nuw i32 %x, 3
%res = lshr i32 %mul, 1
call void @use(i32 %mul)
ret i32 %res
}

define i32 @lshr_mul_times_3_div_2_exact_2(i32 %x) {
; CHECK-LABEL: @lshr_mul_times_3_div_2_exact_2(
; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 1
; CHECK-NEXT: [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul nuw i32 %x, 3
%lshr = lshr exact i32 %mul, 1
ret i32 %lshr
}

define i32 @lshr_mul_times_5_div_4(i32 %0) {
; CHECK-LABEL: @lshr_mul_times_5_div_4(
; CHECK-NEXT: [[TMP2:%.*]] = lshr i32 [[TMP0:%.*]], 2
; CHECK-NEXT: [[LSHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul nsw nuw i32 %0, 5
%lshr = lshr i32 %mul, 2
ret i32 %lshr
}

define i32 @lshr_mul_times_5_div_4_exact(i32 %x) {
; CHECK-LABEL: @lshr_mul_times_5_div_4_exact(
; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
; CHECK-NEXT: [[LSHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul nsw i32 %x, 5
%lshr = lshr exact i32 %mul, 2
ret i32 %lshr
}

; Negative test

define i32 @lshr_mul_times_5_div_4_no_flags(i32 %0) {
; CHECK-LABEL: @lshr_mul_times_5_div_4_no_flags(
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
; CHECK-NEXT: [[LSHR:%.*]] = lshr i32 [[MUL]], 2
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul i32 %0, 5
%lshr = lshr i32 %mul, 2
ret i32 %lshr
}

; Negative test

define i32 @mul_times_5_div_4_multiuse_lshr(i32 %x) {
; CHECK-LABEL: @mul_times_5_div_4_multiuse_lshr(
; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[X:%.*]], 5
; CHECK-NEXT: [[RES:%.*]] = lshr i32 [[MUL]], 2
; CHECK-NEXT: call void @use(i32 [[MUL]])
; CHECK-NEXT: ret i32 [[RES]]
;
%mul = mul nuw i32 %x, 5
%res = lshr i32 %mul, 2
call void @use(i32 %mul)
ret i32 %res
}

define i32 @lshr_mul_times_5_div_4_exact_2(i32 %x) {
; CHECK-LABEL: @lshr_mul_times_5_div_4_exact_2(
; CHECK-NEXT: [[TMP1:%.*]] = lshr exact i32 [[X:%.*]], 2
; CHECK-NEXT: [[LSHR:%.*]] = add nuw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[LSHR]]
;
%mul = mul nuw i32 %x, 5
%lshr = lshr exact i32 %mul, 2
ret i32 %lshr
}

define i32 @ashr_mul_times_3_div_2(i32 %0) {
; CHECK-LABEL: @ashr_mul_times_3_div_2(
; CHECK-NEXT: [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 1
; CHECK-NEXT: [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nuw nsw i32 %0, 3
%ashr = ashr i32 %mul, 1
ret i32 %ashr
}

define i32 @ashr_mul_times_3_div_2_exact(i32 %x) {
; CHECK-LABEL: @ashr_mul_times_3_div_2_exact(
; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nsw i32 %x, 3
%ashr = ashr exact i32 %mul, 1
ret i32 %ashr
}

; Negative test

define i32 @ashr_mul_times_3_div_2_no_flags(i32 %0) {
; CHECK-LABEL: @ashr_mul_times_3_div_2_no_flags(
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 3
; CHECK-NEXT: [[ASHR:%.*]] = ashr i32 [[MUL]], 1
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul i32 %0, 3
%ashr = ashr i32 %mul, 1
ret i32 %ashr
}

; Negative test

define i32 @ashr_mul_times_3_div_2_no_nsw(i32 %0) {
; CHECK-LABEL: @ashr_mul_times_3_div_2_no_nsw(
; CHECK-NEXT: [[MUL:%.*]] = mul nuw i32 [[TMP0:%.*]], 3
; CHECK-NEXT: [[ASHR:%.*]] = ashr i32 [[MUL]], 1
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nuw i32 %0, 3
%ashr = ashr i32 %mul, 1
ret i32 %ashr
}

; Negative test

define i32 @mul_times_3_div_2_multiuse_ashr(i32 %x) {
; CHECK-LABEL: @mul_times_3_div_2_multiuse_ashr(
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 3
; CHECK-NEXT: [[RES:%.*]] = ashr i32 [[MUL]], 1
; CHECK-NEXT: call void @use(i32 [[MUL]])
; CHECK-NEXT: ret i32 [[RES]]
;
%mul = mul nsw i32 %x, 3
%res = ashr i32 %mul, 1
call void @use(i32 %mul)
ret i32 %res
}

define i32 @ashr_mul_times_3_div_2_exact_2(i32 %x) {
; CHECK-LABEL: @ashr_mul_times_3_div_2_exact_2(
; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 1
; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nsw i32 %x, 3
%ashr = ashr exact i32 %mul, 1
ret i32 %ashr
}

define i32 @ashr_mul_times_5_div_4(i32 %0) {
; CHECK-LABEL: @ashr_mul_times_5_div_4(
; CHECK-NEXT: [[TMP2:%.*]] = ashr i32 [[TMP0:%.*]], 2
; CHECK-NEXT: [[ASHR:%.*]] = add nuw nsw i32 [[TMP2]], [[TMP0]]
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nuw nsw i32 %0, 5
%ashr = ashr i32 %mul, 2
ret i32 %ashr
}

define i32 @ashr_mul_times_5_div_4_exact(i32 %x) {
; CHECK-LABEL: @ashr_mul_times_5_div_4_exact(
; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nsw i32 %x, 5
%ashr = ashr exact i32 %mul, 2
ret i32 %ashr
}

; Negative test

define i32 @ashr_mul_times_5_div_4_no_flags(i32 %0) {
; CHECK-LABEL: @ashr_mul_times_5_div_4_no_flags(
; CHECK-NEXT: [[MUL:%.*]] = mul i32 [[TMP0:%.*]], 5
; CHECK-NEXT: [[ASHR:%.*]] = ashr i32 [[MUL]], 2
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul i32 %0, 5
%ashr = ashr i32 %mul, 2
ret i32 %ashr
}

; Negative test

define i32 @mul_times_5_div_4_multiuse_ashr(i32 %x) {
; CHECK-LABEL: @mul_times_5_div_4_multiuse_ashr(
; CHECK-NEXT: [[MUL:%.*]] = mul nsw i32 [[X:%.*]], 5
; CHECK-NEXT: [[RES:%.*]] = ashr i32 [[MUL]], 2
; CHECK-NEXT: call void @use(i32 [[MUL]])
; CHECK-NEXT: ret i32 [[RES]]
;
%mul = mul nsw i32 %x, 5
%res = ashr i32 %mul, 2
call void @use(i32 %mul)
ret i32 %res
}

define i32 @ashr_mul_times_5_div_4_exact_2(i32 %x) {
; CHECK-LABEL: @ashr_mul_times_5_div_4_exact_2(
; CHECK-NEXT: [[TMP1:%.*]] = ashr exact i32 [[X:%.*]], 2
; CHECK-NEXT: [[ASHR:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[ASHR]]
;
%mul = mul nsw i32 %x, 5
%ashr = ashr exact i32 %mul, 2
ret i32 %ashr
}

declare void @use(i32)
19 changes: 16 additions & 3 deletions llvm/test/Transforms/InstCombine/lshr.ll
Original file line number Diff line number Diff line change
Expand Up @@ -628,19 +628,32 @@ define i32 @mul_splat_fold_wrong_lshr_const(i32 %x) {
ret i32 %t
}

; Negative test
; Negative test (but simplifies into a different transform)

define i32 @mul_splat_fold_no_nuw(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_no_nuw(
; CHECK-NEXT: [[M:%.*]] = mul nsw i32 [[X:%.*]], 65537
; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 16
; CHECK-NEXT: [[TMP1:%.*]] = lshr i32 [[X:%.*]], 16
; CHECK-NEXT: [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[T]]
;
%m = mul nsw i32 %x, 65537
%t = lshr i32 %m, 16
ret i32 %t
}

; Negative test

define i32 @mul_splat_fold_no_flags(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_no_flags(
; CHECK-NEXT: [[M:%.*]] = mul i32 [[X:%.*]], 65537
; CHECK-NEXT: [[T:%.*]] = lshr i32 [[M]], 16
; CHECK-NEXT: ret i32 [[T]]
;
%m = mul i32 %x, 65537
%t = lshr i32 %m, 16
ret i32 %t
}

; Negative test (but simplifies before we reach the mul_splat transform)- need more than 2 bits

define i2 @mul_splat_fold_too_narrow(i2 %x) {
Expand Down
Loading