Skip to content
New issue

Have a question about this project? Sign up for a free GitHub account to open an issue and contact its maintainers and the community.

By clicking “Sign up for GitHub”, you agree to our terms of service and privacy statement. We’ll occasionally send you account related emails.

Already on GitHub? Sign in to your account

[InstSimplify] Fold X * (2^N + 1) >> N -> X when N is half the bitwidth of X #92909

Closed
wants to merge 1 commit into from
Closed
Show file tree
Hide file tree
Changes from all commits
Commits
File filter

Filter by extension

Filter by extension

Conversations
Failed to load comments.
Loading
Jump to
Jump to file
Failed to load files.
Loading
Diff view
Diff view
39 changes: 39 additions & 0 deletions llvm/lib/Analysis/InstructionSimplify.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1479,6 +1479,29 @@ static Value *simplifyLShrInst(Value *Op0, Value *Op1, bool IsExact,
if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWShl(m_Value(X), m_Specific(Op1))))
return X;

// Look for a "splat" mul pattern - it replicates bits across each half
// of a value, so a right shift is just a mask of the low bits:
const APInt *MulC;
const APInt *ShAmt;
if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
match(Op1, m_APInt(ShAmt))) {
unsigned ShAmtC = ShAmt->getZExtValue();
unsigned BitWidth = ShAmt->getBitWidth();
if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC) {
// FIXME: This condition should be covered by the computeKnownBits, but
// for some reason it is not, so keep this in for now. This has no
// negative effects, but KnownBits should be able to infer a number of
// leading bits based on 2^N + 1 not wrapping, as that means 2^N must not
// wrap either, which means the top N bits of X must be 0.
if (ShAmtC * 2 == BitWidth)
return X;
const KnownBits XKnown = computeKnownBits(X, /* Depth */ 0, Q);
if (XKnown.countMaxActiveBits() <= ShAmtC)
return X;
}
}

// ((X << A) | Y) >> A -> X if effective width of Y is not larger than A.
// We can return X as we do in the above case since OR alters no bits in X.
// SimplifyDemandedBits in InstCombine can do more general optimization for
Expand Down Expand Up @@ -1523,6 +1546,22 @@ static Value *simplifyAShrInst(Value *Op0, Value *Op1, bool IsExact,
if (Q.IIQ.UseInstrInfo && match(Op0, m_NSWShl(m_Value(X), m_Specific(Op1))))
return X;

const APInt *MulC;
const APInt *ShAmt;
if (Q.IIQ.UseInstrInfo && match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC))) &&
match(Op1, m_APInt(ShAmt)) &&
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap()) {
unsigned ShAmtC = ShAmt->getZExtValue();
unsigned BitWidth = ShAmt->getBitWidth();
if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC &&
ShAmtC < BitWidth - 1) /* Minus 1 for the sign bit */ {
KnownBits KnownX = computeKnownBits(X, /* Depth */ 0, Q);
if (KnownX.countMaxActiveBits() <= ShAmtC)
return X;
}
}

// Arithmetic shifting an all-sign-bit value is a no-op.
unsigned NumSignBits = ComputeNumSignBits(Op0, Q.DL, 0, Q.AC, Q.CxtI, Q.DT);
if (NumSignBits == Op0->getType()->getScalarSizeInBits())
Expand Down
53 changes: 27 additions & 26 deletions llvm/lib/Transforms/InstCombine/InstCombineShifts.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -1456,41 +1456,42 @@ Instruction *InstCombinerImpl::visitLShr(BinaryOperator &I) {
}

const APInt *MulC;
if (match(Op0, m_NUWMul(m_Value(X), m_APInt(MulC)))) {
if (match(Op0, m_OneUse(m_NUWMul(m_Value(X), m_APInt(MulC))))) {
if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC) {
// Look for a "splat" mul pattern - it replicates bits across each half
// of a value, so a right shift is just a mask of the low bits:
// lshr i[2N] (mul nuw X, (2^N)+1), N --> and iN X, (2^N)-1
if (ShAmtC * 2 == BitWidth)
return BinaryOperator::CreateAnd(X, ConstantInt::get(Ty, *MulC - 2));

// lshr (mul nuw (X, 2^N + 1)), N -> add nuw (X, lshr(X, N))
if (Op0->hasOneUse()) {
auto *NewAdd = BinaryOperator::CreateNUWAdd(
X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
I.isExact()));
NewAdd->setHasNoSignedWrap(
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
return NewAdd;
}
auto *NewAdd = BinaryOperator::CreateNUWAdd(
X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
I.isExact()));
NewAdd->setHasNoSignedWrap(
cast<OverflowingBinaryOperator>(Op0)->hasNoSignedWrap());
return NewAdd;
}

// The one-use check is not strictly necessary, but codegen may not be
// able to invert the transform and perf may suffer with an extra mul
// instruction.
if (Op0->hasOneUse()) {
APInt NewMulC = MulC->lshr(ShAmtC);
// if c is divisible by (1 << ShAmtC):
// lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
if (MulC->eq(NewMulC.shl(ShAmtC))) {
auto *NewMul =
BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
assert(ShAmtC != 0 &&
"lshr X, 0 should be handled by simplifyLShrInst.");
NewMul->setHasNoSignedWrap(true);
return NewMul;
}
APInt NewMulC = MulC->lshr(ShAmtC);
// if c is divisible by (1 << ShAmtC):
// lshr (mul nuw x, MulC), ShAmtC -> mul nuw nsw x, (MulC >> ShAmtC)
if (MulC->eq(NewMulC.shl(ShAmtC))) {
auto *NewMul =
BinaryOperator::CreateNUWMul(X, ConstantInt::get(Ty, NewMulC));
assert(ShAmtC != 0 &&
"lshr X, 0 should be handled by simplifyLShrInst.");
NewMul->setHasNoSignedWrap(true);
return NewMul;
}
}

// lshr (mul nsw (X, 2^N + 1)), N -> add nsw (X, lshr(X, N))
if (match(Op0, m_OneUse(m_NSWMul(m_Value(X), m_APInt(MulC))))) {
if (BitWidth > 2 && (*MulC - 1).isPowerOf2() &&
MulC->logBase2() == ShAmtC) {
return BinaryOperator::CreateNSWAdd(
X, Builder.CreateLShr(X, ConstantInt::get(Ty, ShAmtC), "",
I.isExact()));
}
}

Expand Down
22 changes: 22 additions & 0 deletions llvm/test/Transforms/InstCombine/ashr-lshr.ll
Original file line number Diff line number Diff line change
Expand Up @@ -862,4 +862,26 @@ define i32 @ashr_mul_times_5_div_4_exact_2(i32 %x) {
ret i32 %ashr
}

define i32 @mul_splat_fold_known_active_bits(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_known_active_bits(
; CHECK-NEXT: [[XX:%.*]] = and i32 [[X:%.*]], 360
; CHECK-NEXT: ret i32 [[XX]]
;
%xx = and i32 %x, 360
%m = mul nuw i32 %xx, 65537
%t = ashr i32 %m, 16
ret i32 %t
}

define i32 @mul_splat_fold_no_known_active_bits(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_no_known_active_bits(
; CHECK-NEXT: [[TMP1:%.*]] = ashr i32 [[X:%.*]], 16
; CHECK-NEXT: [[T:%.*]] = add nsw i32 [[TMP1]], [[X]]
; CHECK-NEXT: ret i32 [[T]]
;
%m = mul nsw i32 %x, 65537
%t = ashr i32 %m, 16
ret i32 %t
}

declare void @use(i32)
21 changes: 14 additions & 7 deletions llvm/test/Transforms/InstCombine/lshr.ll
Original file line number Diff line number Diff line change
Expand Up @@ -348,22 +348,31 @@ define <2 x i32> @narrow_lshr_constant(<2 x i8> %x, <2 x i8> %y) {

define i32 @mul_splat_fold(i32 %x) {
; CHECK-LABEL: @mul_splat_fold(
; CHECK-NEXT: [[T:%.*]] = and i32 [[X:%.*]], 65535
; CHECK-NEXT: ret i32 [[T]]
; CHECK-NEXT: ret i32 [[X:%.*]]
;
%m = mul nuw i32 %x, 65537
%t = lshr i32 %m, 16
ret i32 %t
}

define i32 @mul_splat_fold_known_zeros(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_known_zeros(
; CHECK-NEXT: [[XX:%.*]] = and i32 [[X:%.*]], 360
; CHECK-NEXT: ret i32 [[XX]]
;
%xx = and i32 %x, 360
%m = mul nuw i32 %xx, 65537
%t = lshr i32 %m, 16
ret i32 %t
}

; Vector type, extra use, weird types are all ok.

define <3 x i14> @mul_splat_fold_vec(<3 x i14> %x) {
; CHECK-LABEL: @mul_splat_fold_vec(
; CHECK-NEXT: [[M:%.*]] = mul nuw <3 x i14> [[X:%.*]], <i14 129, i14 129, i14 129>
; CHECK-NEXT: call void @usevec(<3 x i14> [[M]])
; CHECK-NEXT: [[T:%.*]] = and <3 x i14> [[X]], <i14 127, i14 127, i14 127>
; CHECK-NEXT: ret <3 x i14> [[T]]
; CHECK-NEXT: ret <3 x i14> [[X]]
;
%m = mul nuw <3 x i14> %x, <i14 129, i14 129, i14 129>
call void @usevec(<3 x i14> %m)
Expand Down Expand Up @@ -628,8 +637,6 @@ define i32 @mul_splat_fold_wrong_lshr_const(i32 %x) {
ret i32 %t
}

; Negative test (but simplifies into a different transform)

define i32 @mul_splat_fold_no_nuw(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_no_nuw(
; CHECK-NEXT: [[TMP1:%.*]] = lshr i32 [[X:%.*]], 16
Expand All @@ -641,7 +648,7 @@ define i32 @mul_splat_fold_no_nuw(i32 %x) {
ret i32 %t
}

; Negative test
; Negative test

define i32 @mul_splat_fold_no_flags(i32 %x) {
; CHECK-LABEL: @mul_splat_fold_no_flags(
Expand Down
Loading